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cation. It debunks the myth that the larger the data set one collects on the response
of a dynamic system, the better off one is in identifying its parameters. It shows that
certain data points may have no bearing on improving the accuracy of the parameters
which are to be identified and therefore need not be recorded, stored or processed.
A deeper understanding of these results will have a significant effect on in-flight
identification of large space structures.

D) The fourth topic deals with an analysis of the tradeoffs between control and identifi-
cation. The duality of the concepts of identification and control are studied in a uan-
titative manner and an illustrative example is shown amplifying the analytical results.

The report has several new and unexpected results, some of which may appear non-intuitive
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SECTION 1. INTRODUCTION
..

For a structure to successfully satisfy the needs for which it is designed, the structural

analyst/designer is often required to predict its response under a variety of dynamic loading

conditions. Such a capability to predict the response of a large complex structure hinges about our

ability to create suitable models, and to be able to improve and validate them through

experimentatiqn and testing. This process of the creation of an analytical model for a structural

system along with procedures to experimentally test, upgrade and validate in some sense the model

is what shall be referred to in this report by the term structural identification. Thus the

identification process may be seen as a necessary prelude to the active control of structures --

control required, for instance, to suppress vibrations, achieve fine pointing in astronomical space

telescopes, maintain precise shape, limit structural stresses caused by certain types of dynamic

loads, or satisfy certain tolerance requirements for the adequate operation of certain subcomponents

and precision instrumentation.

As such the reason why the concept of structural identification is necessary and is gaining

increased importance as we continue to build large, complex, one-of-a-kind structures is our

fundamental inability to analytically model, with desired precision and confidence, the structural

dynamics of large, especially flexible, structures. The phases of model building, experimentation

design, algorithm development and validation procedures are actually interactive, each dependent

on the other, and all in turn dependent on the final needs which the desired structure is meant to

satisfy. This interactive nature of the structural identification process therefore requires

experimental design to be fully cognizant of: (a) the analytical model to be used (e.g., linear or

nonlinear models), (b) the nature of the estimation algorithm to be used, (c) the validation criteria,

9.,
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and (d) the overall goals and needs that the structure is designed to meet.

This report deals with the development of a methodology for the optimal placement of

sensors in structural systems for system parameter identification(SPID) and some associated

aspects of this general problem area. It may therefore be thought of as being primarily related to the

experimental design aspects of the SPID process. Yet, as we shall see, the interaction with the other

three phases of the process, namely, algorithm development, validation and model building is

intense and cannot be neglected.

1.1. Motivation.

Millions of dollars are being spent in various industries related to the fields of aerospace,

mechanical, civil and marine engineering for the experimental testing and validation of structural

systems in order to ascertain that they behave under dynamic loads in a manner that they are

supposedly designed to. Such experimental procedures, in essence, are rather simple. They

constitute the application of known dynamic forces to the structural system and the measurement of

its response at one or more locations. Yet the procedure is extremely expensive especially when

carried out on full-scale systems, such as, spacecrafts and building structures. To gain the type of

information that would provide the best possible model for a structural system (and thereby provide

the capability to predict its response to a variety of dynamic forces that the system may be subjected

to during its useful life) one therefore needs to design these experiments appropriately so that a

maximum amount of information can be obtained about the relatively unknown aspects of the

model through the recorded force and response time histories of motion. Though this aspect of

experimental design has been long recognized by experimentalists and structural analysts, little, if

2J
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any, work has so far been done in this area. In fact a literature search shows but a few journal

references[ 1 ] on developing a methodology for optimally locating sensors in a dynamic structural

system so that records obtained from those locations would be maximally beneficial in identifying

the structural system.

For large flexible structures, which are extended in space, it may not be altogether easy to

ascertain where to locate sensors to obtain maximal information from the records obtained. The

decision on where to locate sensors during dynamic testing of a structure is generally done today

by experimentalists and technicians, and is based on experience, intuition and convenience in

acquiring data. It is unfortunately not based on any cogent theoretical analysis of the situation. It is

such an analysis that this report attempts to include. As we shall show in this report, the optimal

sensor locations may be rather nonintuitive to see -- a consequence of our lack of experience with

inverse problems. Without any well defined methodology for locating sensors, so that data from

those locations will be maximally useful in system identification, often, experiments which yield

little or no useful information about those aspects of the structural model that the analyst is greatest

in doubt of, are carried out. This in turn necessitates more experiments, all adding up to increased

costs in terms of financial and human resources, each new experiment being designed on the basis

of experience and intuition rather than on some discernible rational methodology. Such an ad hoc

experimental design process is not only extremely wasteful, but does not ensure that we are doing

the best we possibly can. No confidence is provided in the results from a particular test in terms of

its information content vis-a-vis an unknown model parameter which the test aims at assessing.

Thus not only would such testing be uneconomical in terms of time and money but it would lead to

erroneous results, and worse still, a lack of knowledge regarding how badly off (or erroneous)

these results are.

3
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This study has been motivated by the following types of questions, none of which so far
r.-

have been adequately answered (several have not even been addressed) in the literature, on a

rational basis.

• Given M sensors, where should they be placed in a spatially extended dynamic

structural system so that the unknown system parameters can be "best" identified ?

• Given that M sensors are in place in a structure, where should the next N be placed so

that the M+N sensors will yield maximal information about the unknown system parameters ?

* What is the minimum number of sensors required in a given structural configuration to

be able to uniquely identify a certain set of unknown parameters ?

* How does one compress data in the recorded time series during an experiment without

losing information about the parameters which need to be identified in a dynamic system ?

* Are there any trade offs between identification and control in so far as the placement of

sensors is concerned ? Are there sensor locations that would be maximally beneficial for control

while being minimally beneficial for identification ?

1.2. Brief Outline of the Report.

While it has been generally recognized that the quality of parametric identification of

structural systems depends on the location at which sensors are placed and data gathered, very little
by way of a rational methodology has so far been developed for optimally locating sensors. This

report presents some new results in this direction and points out the need for more work -- work

that is sorely needed if the costly phase of experimentation is to yield quality data which can be

4
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used to best identify structural systems. While we do not pretend that we have entirely solved the

five questions posed in the previous section, several new results pertaining to them have been

obtained. In what follows we provide a bird's eye view of the topics considered in each section of

this report, sacrificing at times exactitude and detail (which may be abundantly found in the material

contained in the individual sections themselves), to provide a general sense of flow and direction to

the entire report.

Section II begins with a study of uniqueness in the identification of a specific structural

system which is commonly met with in aircraft and space-craft structures and more generally in the

fields of aerospace, mechanical, civil and marine engineering -- the bending cantilever beam. Thus

we look here at situations akin to those posed by the third question in Section 1.1. The beam is

modelled in the standard manner, using finite elements and its mass distribution is assumed to be

known. It is shown that for such an undamped bending beam model, the stiffness distribution

throughout the beam can be uniquely determined through the placement of only two sensors when

the beam is subjected to a base motion. In fact if the displacement and rotational time histories of

any two adjacent nodes is available, unique identification of the entire stiffness distribution of the

beam to one side of the fixed support is possible. While this may be thought of as an extension of

work done in the past on shear beams[2], the results obtained here will find wider applicability

because of the ubiquitous nature of bending beams, especially in space structures. While these

results are predicated on the basis that there is no measurement noise, they indicate an important

fact, namely that sufficient information to uniquely identify the stiffness distribution is available

through the use of just two sensors, appropriately placed. Also, less than two would lead to

non-unique identification, as would the use of two or more sensors if placed improperly along the

cantilever. As most identification algorithms are iterative, convergence of such schemes to a

'IF 5
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particular parameter value may not guarantee that we have found the correct system parameter

unless we start off with our initial guess sufficiently close to the unknown value. The objective

function surface has several local minima in which such an iterative scheme could get trapped. The

significance of these uniqueness results lies in the fact that they show that one would converge to

the correct parameter values starting from = initial guess should we appropriately locate our

sensors; furthermore, only two sensors are required. The novelty in this result lies in that even the

forward solution of this problem cannot be obtained in closed form.

'.p

Section III deals with the development of a methodology for optimal placement of sensors

when one is interested in obtaining the "best" estimate of the unknown parameters starting from a

suitable close-by initial guess and using noisy measurement data. Thus this section deals with the

local optimization problem where one is attempting to reach the minimum of an objective function

having started off from a close enough initial guess. Loosely speaking, we attempt to answer the

following question: a) Given that we are attempting to fit noisy, measured data to our model and

thereby determine the requisite unknown parameters of the model, and b) that we are hunting for

the best parameters that fit the data within a small neighborhood of our a priori knowledge of the

parameters, c) where should we place sensors so that a minimum covariance estimate of the

parameters can be obtained ? Clearly, these locations would be partially dictated by the estimator

and the estimation algorithm used and therefore the sensor locations would be estimator dependent.

To get around this major difficulty, we decouple the estimation problem from the optimization

problem by invoking the concept of an efficient estimator, thereby making the methodology

independent of the estimator used. Thus the methodology which is developed answers questions 1-.,.l,

akin to the fist two posed in Section 1.1. In fact, as we shall see, it provides a very comprehensive

picture on optimal sensor locations for parametric identification in a noisy measurement

6
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environment.

Section IV deals with an important aspect of experimental design. It attempts to throw light

on the ways in which one can minimize measurement data handling and processing in SPID

without relinquishing information contained in noisy data about the unknown parameters which one

needs to identify from the measurements. The study is of a preliminary nature and deals with a

simple single degree-of-freedom system. It has two important outcomes. Firstly, it debunks the

myth that "the larger the set of data you collect (e.g. frequency data ) on the response of a dynamic

system the better off you are in identifying its unknown parameters." In fact, we analytically show

the existence of frequency data that would have no bearing on reducing the uncertainty of the

parameter estimates and therefore while being burdensome in handling and processing would cause

no improvement in the results of SPID. Such studies are rudimentary at this point, but will indeed

gain importance in areas such as in-flight SPID where it may be important to utilize data efficiently

or in circumstances where data needs to be beamed down for terrestrial processing.

Section V deals with the tradeoffs between identification and control. This is an important

aspect of SPID as it is subsumed throughout this report that one of the major reasons for improving

our SPID capability is so that we can control large, flexible structures to perform in ways that are

desirable and perhaps meet certain specific needs. While several investigators have alluded to the

duality between identification and control on a qualitative basis, few, if any, have provided any

quantitative analysis of the situation. In this section we do this through the intermediary concept of

an optimal input. We investigate the following question: Given that we have only a limited amount

of energy to create a forcing function to input into a dynamic system, and we create the optimal

forcing function(s) to identify/control the system, what are the tradeoffs between our ability to

7
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identify the system as opposed to our ability to control the system. The method relies on the

construction of an objective function which changes continuously from one that emphasizes control

to one that emphasizes identification. The formulation for a general linear dynamic structural system

results in the setting up of a nonlinear two point boundary value problem. While the method

developed here is applicable to structures modelled as general linear dynamic systems we have

provided in this report numerical results for only a single degree-of-freedom system.

In all the abovementioned four areas, a lot remains to be done. In fact it may be fair to say

that this effort barely scratches the surface of the deep seated problems that need to be faced, '-

identified and solved if SPID of large, flexible structures can be carried out in a fruitful and reliable

manner. Yet, each section of this report contains several new and useful results.

In years to come the role of SPID will indeed increase; for the determination of models of r

complex, flexible structures will become an important aspect of diverse application areas like

control of structures, damage assessment of structures, early fault detection, and the monitoring of

changes in structural systems either as a consequence of environmental conditions or as a

consequence of the addition or removal of subassemblages. An excellent paradigm to keep in mind

would be spacecraft structures, which need to be controlled, whose configurations may be greatly

changed through docking operations with other space structures, whose materials may degrade in

time due to say photon radiation, and for which early fault detection may be highly beneficial.

While several of the chapters deal with general linear dynamic systems, and develop " 1
generally applicable methodologies to answer questions such as those posed in Section 1. 1 for such

systems, constraints of time and resources have caused us to limit, for the purposes of this study,

8
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our numerical studies to only the simplest numerical examples. Yet these simple problems for

which numerical results have been presented in this report are perhaps quintessential to

understanding the physics of the phenomena, without which insight into the behavior of complex

systems would be hard to acquire. More work is clearly called for. Hopefully, the results reported

herein will form a basis for perhaps a more protracted and deeper follow-on study which could

include many of the major issues dealt with here. Accordingly, Chapter VI addresses the issues of

what this study has taught us, in which directions further work and analyses are required, what

new areas have been uncovered and what an integrated research plan addressing some of these

issues should endeavor to pursue.

9,
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SECTION 2. UNIQUENESS IN THE IDENTIFICATION OF A

CANTILEVER BENDING BEAM

2.1. Introduction

The identification of large structural systems is an area of research that has, over the last few

years, continued to attract a significant amount of interest all over the world. Most such methods of

parametric identification rely on iterative algorithms which endeavor to successively reduce the

mismatch between the measured responses at one or more points in the physical system, and those

predicted by a system model which purports to adequately represent the physical structure. For a

given time history of measured inputs, applied at suitable locations in the structure, the system

model parameters are adjusted (usually automatically) so that the time history of the mismatch is

reduced as far as is computationally possible. While such a time history matching scheme will

often converge to a set of model parameters, there is no guarantee, in general, that the parameters

so obtained, correctly represent the actual physical system under consideration. The "zeroing-in"

of the iterative scheme to an erroneous, albeit physically reasonable, set of parameters has great

importance from a practical standpoint; for, this could lead to substantial errors in the calculation of

quantities of engineering significance like bending moments and shear forces within the structure

[3].

In a previous study [2] it was shown that a structure modelled as a discrete cantilever shear

beam subjected to excitation at its fixed end (base) exhibits a degree of nonuniqueness in its

identified stiffness distribution which is dependent on the location at which the time history of the

response is gathered, and subsequently used for history matching. For instance, matching of the

10
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displacement response at the mass level closest to fixed end (first mass level) was shown

to cause the iterative schemes to zero-in on the correct stiffness distribution throughout the

structure. On the other hand, history matching of the response gathered at the Nth mass level of

an N mass system could lead to N! different stiffness distributions, all of which would be

indistinguishable in so far as their "base input - Nth mass response" pairs are concerned. This

realization has indeed had a significant impact on the experimental testing of spatially extended

structural systems; for the placement of sensors can critically affect our confidence in the identified

parameters obtained through history matching techniques.

Whereas several cantilevered structural systems used in aerospace, civil and mechanical

engineering can be modelled as shear beams, several others may be more appropriately modelled by

bending beams. Cantilevered bending beams are widely used in buildings, bridges, peers,

offshore structures, mechanical components and subassemblages, marine vessels, nuclear reactors,

aircraft and spacecraft structures and in geotechnical engineering. Hence such beams whose

cross-sections and/or material properties, in general, vary along their lengths constitute structural

systems that are generic in character and therefore, from a practical standpoint, they are extremely

important. This section concerns itself with this category of structureal systems.

We consider a finite element model (FEM) of a cantilever undamped bending beam, and

investigate the conditions under which unique identification of the stiffness of each finite element

throughout the length of the beam can be achieved. The mass distribution is assumed to be known

a priori throughout the structure, presumably from design drawings. In this paper we consider

structural systems subjected to excitations (displacement and/or rotational inputs) at their fixed

ends. It is shown that unique identification of the stiffness paranters involved in the finite element
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Figure 1. (a)A finite element model of the cantilever
bending beam (b) a typical element of the beam.
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model can be done by using data obtained at the node level closest to the fixed end. Generalizations

"p

* to uniquely identifying some, though not all, of the stiffness parameters in the FEM model are also

provided. The wide usage of cantilever bending beams in various fields of engineering makes

these results obtained here applicable to a wide set of application areas.

2.2. System Model

Consider a structural system modelled as a linearly elastic, discrete, 2N degree of freedom

bending beam as shown in Figure l(a). The length of the ith finite element is taken to be Li and its

flexural characteristic to be (EI)i (where E refers to the modulus of elasticity and I to the moment of

inertia). We shall assume that both the mass and the rotary inertia at each node are known apriori

as are also the lengths Li throughout the model. Using the sign convention shown in Figure 1(b) the

stiffness matrix for the ith element can be expressed as [4]

6 3L. -6 3L.

2 2
3L. 2L. -3L. L.1 1 1 1

ki= a -6 -3L.3  6 -3L. (1)
2 2

3L. L.2  -3L. 2L.2
1 I I I

where ai = 2(EI)./Li3 . The dynamical equations of motion can then be written as

A A A

Mv + Kv = f (2)

where M = diag(m, m2 ....m2N) is the 2N x 2N lumped mass matrix, containing the mass and

13
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rotary inertias, k is the assembled stiffness matrix and t is the vector of external loads. The

2N-vector, v, is defined as

v = [W 1, 01, W2, 0 2,...WN, 0N ]T (3)

where Wi, 0i are the absolute displacement and rotation at node i. The elements mr1i, i = 1, 2,...N

correspond to the rotary moments of inertia. Since the mass matrix is positive definite, equation (1)

can be renormalized to

z + Kz = f (4)

wherz= 112 , K k~r~t, =A A

where z = MI/2v, K = M-1/2 /2, and f= M - f. When the excitation to the system is

provided by displacements and/or rotations at the fixed end, the equations of motion of the system

above the (s-i )th node level can be expressed as

u + Ks u = f (5)

where Ks = [ci, j] is obtained by deleting the first 2s-2 rows and colums of K, and u is obtained

by deleting the first 2s-2 components of v. The elements of Ks are shown in Figure 2. The

(2N-2s+2)-vector, g, can be expressed as

g ; [p,(t), -qs(t), 0, 0, 0 1 T (6)

where,

15
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P t) 6asUs_1 (t) + 3asLS-s1 (t) (7a)
Ps~) . 1/2 + 12t

2ms- 1 2s-3) (2s-1 2zs-2)1

and

3a .ss-(t) asL s -It (7b)

( M m 2 s 3) (m 2, m 2 s 2)

_m--¢with m0  m., =1.

S.

'Me identification procedure requires the determination of ai, i =1, 2,...,.N given the knowledge of ,

the matrix M, 00(t) and u0(t). We shall assume that the system start from rest so that v(0) = v(0)

= 0. Tl,e masses m, i = 1,2...,2N and the elements Li, i = 1, 2,..... N will be assumed to be

and

known and positive. Physical interpretation of the results will be provided as we go along. "

2?

2.2.1. Some Useful Results

In this section we prove some results that will be used subsequently. The first two lemmas ,

follow from the positive definite nature of the matrix K.. We provide them here for the sake of

completeness and also for setting out notation which we will make use of later on.

Lemma 1: Given the matrix L where

Ple

)"16



in which D is invertable,
det(L) -det(D)det(A-BD (9)

...

~Proof: By block Gaussian elmination

rA B" 'W yi 1
LL= (1)

so that det(L) =det(W)det(Z). Nodng (10), Z =D and W A-BDC and the result follows.

Lemma 2: The matrix Ks has no zero eigenvalue. In fact

-t-

Proof: We can express K. as
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K [ ,] (12) wj
C

where
'p
',p

6a -3aNL
rr N- 1/2 1/2

M2N-1 m2N

D -3aNLN 2a (13)

1/2 1/2 M2 p
LM 2N-1I m 2NJ

a,'%

2 23aNL"
Using Lemma 1, det K = det(D) det(Ks. I = det(K'.) (14)m-2N m2NN-1

where K',.1 is the (2N-2(s-1)-2) x (2N-2(s-1)-2) matrix obtained by deleting the last two rows and

columns of K. corresponding to a system from mass to m2N_2.Using (14) successively, the

result follows.

Let Pi. j denote the matrix formed by deleting the i row and jth column of [Ks-M]. Let qi. j

= det[P,, 1. Let P. 0= (Ks-XI) and R(X) = det(P0. 0). The we have the following result.

Lemma 3:

L X qi.j(X) = ' , i j

LX-, 1R() - , -l and (15)

18I
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Lt (q qi) = 0 (16)

Proof: From the definition of qj(X) and R() we have,

R(X) = (-A) 2N-2s+2 + T(-X)2N-s +.... (17)

qi,() = () 2 2 s~' + (T-ci i) (_).)2N-2s + (18)

qi, j (X) = (-1)i+j -1 c, i(X)2N 2s + ct(=) 2N 2sl + ... i *j (19)

where T = trace(K,), [Ks] = [cij], and (x is a constant which can be obtained. Taking the limits

the result follows.

2.3. Identification of stiffness distribution of finite element model

Using relation (5) and taking Laplace Transforms, and replacing the transform variables by

i' 'L we get

(K -)I)U(?) = G(X) (20)

where U(X) and G() represent transformed quantities and I is the identity matrix. Solving now

for U,(X) and 0. (X) we get

19



IA

( Ps(X)q 1 (X) + q,(X)q 2 1(X)
= ' '0, (21)

NW R(X)

and

e5(x) "[P,(X)ql, 2(X) + %l(X)q 2.2(X)](= (22)
R(;X)IR..

Denoting

1 Ps(X)

A-- , s= 1,2.....N (24)

B$X) = as U _(X)

Bs. asX UsA( , s=12...N(24)

and using (7) we get

A51 (X) = 6 3L5  0s-i(X) (5=s10 + - s O-k (25)

(m2sm2s-3) (m2sIm2 .2)l U()

and,

3L 2  0s-l(I )

B.( 5 00 + - , s= 1...N. (26)S- /2 /2 u sa ( .
(m 2m2. 3) (m2m 2s-2) 3-1 00

When the Lt As 1 L(X) exists, it shall be denoted by A-- Similarly, B Lt B

20 s-l( .),

20



when the limit exists. Clearly the above limits exist if and only if

i-(27)

Lemma 4: IfAs-i and BS exist, then they cannot both be zero.

Proof: Using the definitions of A.- and B-1 h eutflos

2 "2

sai As- the reul follows)

AS-p

Lhe m m 5:e Aii ssm e l th A - a ndv Bim exist and only if, L5 1 >0. T e-t e s ne o h

A,,

112F

sB1  2 ' '/2

O s-I

t s i = Ys- < 
2 " (2 )

Proof: We show that when condition (a) is not satisfied condition (b) is always satisfied.

(i) Let As-i a0; then condition (a) is not satisfied. But by Lemma 4, Bsi *0 also As-i

o ig*2/3 Lo 1(onin/m2 )s 2 and condition (b) is satisfied. '

.

(ii) Let As-- 0 but B,_, As_, 2/Ls 1 (meJm 2 ) Again condition (a) is not

21
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satisfied. But this implies Bs-i # 0 and "Bs-1 / s-i # 3/2Ls+(n2/n-1)i/2, so that condition (b)

is satisfied. Similarly, we can show that if condition (b) is not satisfied, condition (a) will always

be satisfied.

Lemma 6: Given mj, j = 2s-3 .... 2s, and L,, j = s, s+l and Uj(X), 0j(X), j = s-I, s; VX, the

parameters a. and as+i can be uniquely identified under the following conditions

(1) A_1 and Bs. exist (30)

(2) Either.

2/ "
2 m -,...

(a) A 0 andB (31) N"siAs- L5 1 •~

2I'
or (b) Bs. a0 and A s'. - L 1  (32)

BsiT 5+1

Proof: We first observe (Lemma 5) that when condition (1) above is satisfied, at least one of the

two conditions 2(a), 2(b) must always be satisfied. Using (21) to (24), we have S

U = _ a (A _-(X)ql1 l + B&1qz1 ) (33)
U 5(X) R(X) 

(S-II
22
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a
$ SUs(k) R(k) (As'lq 12 + B51 q2,2) (34)

"

We divide the proof into two steps.

Step 1. Determination of as

If As1 ; 0, then by (33)

R OL) A_5 1

Noting Lemma 3 we have

S--i

a =- Lt I- .(36) ..

Similarly, if Bs * 0, using (34) and the results of Lemma 3, "'

a Lt (37)
S BS~

ITI

Note by Lemma 4 that both A._1 and B.1 cannot simultaneously be zero.
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Step 2. Determination of a

(i) Condition 2(a) satisfied:

Expanding [Ks-XI ] in terms of the cofactors of the first column we have,

ROL) 6a, + 6as+ ) (3a,+I Ls+1 3asLs) q2 "l (38)
1/2 1/2 qi

n2 -, in2 m 2 .1

6as+_ q3,1 3 a+IL,+l qL4.1

-. " 
~~(M -2s+Irn ,M 2 - q m 2s+2m 2s.1 1/ qd

A a, + 6a, _ (

n.s.

Also by (21) and (23)

R( A) s U sl(+ B ) 2.1  (39)qlA( ) asUs(k.) Ad+s1q

By Lemma 3, Lt D() =0. Also, for As-, 0, using (33) and Lemma 3,

Lt [asBs U- n I 2 1  Lt [a s-l -_ -_ q2'] (40)

U 5- 1  
B 5  A s  1U 51 .. X 2)

us-- q1 -- s As- I kUS (;L) qI

24



=3 " I
.

As-i (~m~q

Equating the right hand sides of equations (38) and (39) and taking limits as X-+-, we get

2 L B .as5 1 [ -- s1s

.Lt [X + asA. t3 .- USOO

2 Ls Bs-I

ai [- +  ]"(41)

1/2 1/2-
in, _ in 25  A s_,

The result therefore follows.

(ii) Condition 2(b) satisfied:

The determination of as+ is similar to the above. We therefore only sketch the proof briefly.

Expand R(X.) in terms of the cofactors of the second column of the matrix [K-X.I] and divide by

q.2. Also using (22) and (24) we get

25
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R(X) -- US.1 (X) q. 2( -) U s(X) (42)

q 212( X)  Os(X) q2.2 ( X) S S e .)

Equating the two expressions for R(A)/q2 2(') and taking limits as we get

a 2,S1 3 A s-I U s-1

S+ 2 1 3 A 1/2 S 1S
a L ~ 3 ~---~-- m- Lt [.-asB. 1 - ]

m2s 111- ' -I 1  s

,2L

a 5 5  si 3 1
+- (43)

L5+1  IB s-I 1/2 1/2
I m2s-I M2s

and hence the result.

Defining

A I P() 6 Us-(X) 3L=A_ + s(44)
s-I a S 0 ) 1/2 1/2 o (X) 1/2 1/2

as s-i m 2sm 2 .3  s-I m2s-lm2s. 2

B'lk)A 1 q,(X) 31, U. 00 L2

B S I )L) a 3 /'2 1/2 - s- + )  1/'2 1/2 (5
s s(XL) M2, m 2s 3  0m-00 n2, M2s. 2

for s 1,2 .... N with mo  m -, 1 , w e se e th a t
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A' s Lt A- (k) and B Lt B1  (46)

exist if and only if

Lt U5 0. 0(47)

Os-

Using this notation, relations (21) and (22) can be expressed as

0 (k)
= a. [As 1ql~ + Bs5 1 q2 1  (48)

and

03(k) =-as [As5 l 1 ,2 + Bs~q22 (49)

R(k).2 5 q1

We then have the following results.

-YLemma 7: The quantities A5, P BsiP A~ -i and B5 s-1 defined in equations (25), (26), (44)

and (45) are such that at least one of the following two conditions is always satisfied.

1.A and B exs

2. As' - and Bs' -i exist.
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Proof: Condition 1 occurs iff Lt 5, -y < . If this condition is not

satisfied, then it follows that Lt us- l( <0, and therefore condition 2

is satisfied.

Lemma 8: Assume that As'- and Bs'- i exist and m2., m2s 1, Ls+1 > 0.

Then at least one of the following two conditions must always be satisfied

(a) As- I * and = L (50)
AS. 1  s+i n2 _I1

kb) B' * 0 and A -Z 2s (51)
BS-1 3 , rn

Proof: The proof is similar to that of Lemma 5.

Lemma 9: Given mj, j = 2s-3 ... 2s; Lj, j = s, s+1, and Uj(X), 0j(X), j s-1, s; for all X, then

parameters a. and a s+1 can be uniquely determined under the following conditions

Si2 • 28
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(1) A' and Bs 1 exists, and (52) b

(2) Either

(a) As. 1  0 and = 2 inL 5 )/2 (53)As_ si-i 1121

or (b) B 0 and XA s'l  L 1 2 (54)
BsE ' 3 2
BS-I ~ s-

Proof: The proof is along the same lines as that of Lemma 4. We therefore only provide the

results.

(i) If As'-1 0

a= - LtA and (55).

S -- ,I

Ae

2 A s. L .'.i-"

s~

%',

i/2 -. 1/2

-ims- Lt [

2 B L

a [- + s-i s (56)
s~ 1/2 - i1/2

Ms-i A5 I M2s
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(ii) If'Bs'-1 0

XOSW

a= --- 4- } and (57)
B s-i(X -1-

1f 1/2 '"

a =- ---L t_ [ 3an (57) m'Lta

+s. 1  A Lt R -a5 B5 1 I'

M2 MI S-

S :!

aL3 2L"--- + (58)
Ls+l B s. m 1/2 m z 1/2

- I 2S-1 m2s.

We note that at any node, s-1, of the finite element model, (by Lemma 7), at least one of the

conditions (30) or (52) must always be satisfied; thus at least one of the two Lemmas 6 and 9 is

always applicable. We have therefore shown that if the displacement and rotational time histories

of motion are known at two consecutive nodes of a FEM of a bending beam along with the mass

and rotary inertia properties corresponding to those two nodes, then a unique identification of the

material property of the element in between the nodes and also that of the element above the upper

node can be obtained. We next show that the data obtained so far, uniquely determines the

displacement and rotational time histories at the next node point.

Lemma 10: Given:
3.

5
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1. as? as+ 1

2. Ui, Oi, i s-1,s

3. Li, i s, s+1, and

4. mi, i 2s-1, 2s+2

U,+I(X) and Os+ 1(X) can be uniquely determined.

Proof: Considering the first two rows of equation (20) and noting the structure of Ks we have

m2. ms+2 m2+. mS+2

and

O =-Y 6as+1 + 3asLs~1 /LZ,(

=_[ Xs /2 ' 1/2 /(60)

1/2 1//2I

L 2sm2s. 1  nm2s+l J

where,

Xs =PA() -(C1.1 X)Us( X) -c1,20s() (61)

Y, q,(X) -CIUs(A- ) -(C22- X) Os(X) (62)

31

and



b
and

2s+2

Z L(3a )/ > 0 (63)
iff2s-I" ,

Hence the result.

or

'"
We next show some results related to the nature of the quantities o

A B AB .
3,-1, S-1, g,, s,  "

Lemma 11. If A . and B5. exist then

(a) if As 0, A. and B exist

(64)

(b) if Bs_ 0, As' and Bs' exist.

Proof: (a) Using (21) and (24),

0 A'q'2 + B5'q 2 2

U 3  A-lqll + B-lql,2  (65

Dividing the numerator and denominator by VR(X), and taking limits X-*)o and using Lemma 3,
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we get

L~t 0 ( ) Bs-1
' A-1 < Ys< **" (66)'S.-

Using (25) and (26), thus AP, and Bs exist. The proof of part (b) is similar.

i B

- t_ 66

Lemma 12: If A's_ and B's. exist then

(a) if A's1 0, As and Bs exist (67)

(b) if Bs 1 0 0, As' and Bs' exist.

Proof. The proof is similar to that of Lemma 11.

2.4. Main Result

Theorem 1. For the FEM of the cantilever bending beam considered, given
(1) mj, j = 2s-3,..... 2N

(2) Lj, j= s A.... N, and (68)

(3) Uj(t), 0j(t), j-s-lI's,

the element stiffness distribution

aj, j--Ass, s+l..xit

can be uniquely determined.
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Proof: The proof is divided into three parts and being recursive can best be expressed in

algorithmic form as follows.

Do steps I --' 3, for i = s,N-l

Step (1): Find A. B. Ai- i , B1 - i using expressions (25), (26), (44)

and (45).

Step (2): Use either Lemma 6 or Lemma 9 depending on Ai. I and Ai - i

to determine a i and ai+] . (By Lemmas 7, 5 and 8, one of these two

lemmas must always be applicable.)

Step (3): Use Lemma 10 to find Ui+1(X), Oi+I().

We have thus shown that the stiffness distribution above a particular node of the FEM can be

uniquely determined by obtaining the displacement and rotational time histories of motion at that

node and the node directly above it. Thus the distribution can be uniquely determined by locating

sensors at only two points in the system.

Corollary: The stiffness of every element of the finite element model of the cantilever bending

beam can be determined given

(1) mj, j= 1, 2,...,2N

(2) Lj, j N, and

(3) Uo(t), 0 (t), U1 (t), 01(t).

Proof: Set s =1 in Theorem l and the result follows.
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We have thus shown that the entire finite element model of the structure can be uniquely identified

if the base displacement and base rotational time histories of motion are known as well as the

displacement and rotational time histories of motion at the first node of the structure. In particular,

unique identification of the entire FEM model can be done if for a known base displacement time

history of motion the rotational and displacement time histories of motion are provided at the first

node.

2.5. Conclusions

In this section we have modelled an undamped cantilever bending beam by the finite element

method, and have attempted to identify the stiffness properties of the elements. The stiffness

matrix of each element is taken to be that usually used in day-to-day structural analysis and design.

It is shown that knowledge of the displacement and rotational time histories of motion at the fixed

end and at the node closest to the fixed end yield unique identification of the properties of each of

the finite elements of the model. More generally, the knowledge of the rotational and displacement

time histories of motion at any two consecutive nodes, say i and i+l (see Figure 1), provides

enough information to uniquely determine the stiffness properties of all the elements that lie to one

side of the node i, away from the fixed end.

It should be noted that the analysis presented here deals with noise free data. The presence

of noise in the measurements would in general lead to low signal-to-noise ratios for measurements

at the lowest node levels so that though the identification problem has a unique solution, in actual

practice, the variance of the parameter estimates may become large. Measurements made farther

3-
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away from the fixed end would be larger in amplitude so that the noise related estimation errors

would be smaller. However, one faces then the nonuniqueness problem. Furthermore, the

analysis herein assumes that a complete knowledge of the input-output time histories (or their

transforms) is available.

While no attention has been given to the process of arriving at an adequate finite element

model (i. e. the proper location and number of nodal points) the prediction of the response of the

actual physical system to various input time histories using the identified parameters (obtained by

history matching) critically depends on the adequacy of the model. Structural modelling being to a

good extent an art acquired mainly by practice, this aspect of the problem has not been considered.

However, it should be pointed out that the uniqueness results arrived at here are indeopndent of the

number of nodes chosen. i. e. no matter how many finite elements are used to represent the system

(i. e. no matter how many parameters to be identified) only two sets of measurements (at the fixed

end and at the node nearest the fixed end) are sufficient to tie down the estimates of the stiffness of

each element uniquely. The analysis of damped structural models has been specifically excluded

for the sake of simplicity and work along these lines is continuing.

Cantilevered bending beams form one of the commonest categories of structural elements and

are used widely across diverse fields of engineering. They find application in the fields of civil,

mechanical, nuclear, aerospace and marine engineering to name but a few and hence these results

may have significance to a wide set of application areas. Large boom type structures in the

aerospace industry, tall buildings in civil engineering and the identification of subassemblages in

the nuclear industry are but a few specific examples.

,
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SECTION 3. A METHODOLOGY FOR OPTIMUM SENSOR LOCATIONS FOR

PARAMETRIC IDENTIFICATION OF DYNAMIC SYSTEMS

3.1. Introduction

Reliable predictions of structural responses are closely dependent upon the validity of the

models chosen to represent the systems involved. When parametric models are used, a proper

knowledge of the various parameter values becomes crucial in establishing the usefulness of such

models. However, to actually come up with these parameter values, one often needs to collect

response data from instruments located at various positions within the structure. The usefulness of

such data, in turn, depends primarily upon the instrument characteristics and on the chosen

positions where the instruments are located. Consequently, for given types of instruments, which

are to be used, one often wants to locate them such that data collected from those locations yield the

"best" estimates of the modelled structural parameters.

Although various methods have been developed to identify the parameters that characterize
flexible structures (e. g., [5-10] ), from records obtained in them under various loading conditions,

few investigators, if any, have looked at the question of where to locate sensors in a large, spatially

extended structure to acquire data for "best" parametric identification [1]. The problem of optimally

locating sensors in a dynamic vibrating system mainly arises from considerations of: (I)

minimizing the cost of instrumentation, data processing and data handling through the use of a

smaller number of sensors, data channels, etc.; (2) obtaining better (more accurate) estimates of
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model parameters from noisy measurement data; (3) improving structural control through the use of

superior structural models; (4) efficiently determining structural properties and their changes with a

view to acquiring improved assessments of structural integrity, and (5) improving the early fault

detection capability for large, flexible structural systems.

The problem addressed in this section can succiently be stated as follows: Given m sensors

where should they be located in a spatially distributed dynamic system so that records obtained

from those locations yield the "best" estimates of those relatively unknown parameters which need

to be identified?

In the past, the optimum sensor location problem (OSLP) was solved by positioning the
',

given sensors in the system, using the records obtained at those locations with a specific estimator,

and repeating the procedure for different sensor locations. The set of loc~tions which yield the .

"best" parameter estimates would then be selected as optimal. The estimates obtained of course

depend upon the type of estimator used. Thus the optimal locations are estimator dependent, and

an exhaustive search needs to be performed for each specific estimator. Such a procedure besides

being highly computationally intensive suffers from the major drawbacks of not yielding any

physical insight into why certain locations are preferable to others.

Work on the solution of the OSLP was perhaps first done by Shah and Udwadia [1]. In

brief, they used a linear relationship between small perturbations in a finite dimensional

representation of the system parameters and a finite sample of observations of the system time 0o

response. The error in the parameter estimates was minimized yielding the optimal locations. In

this section, we developed a more direct approach to the problem which is both computationally
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superior, and throws considerable light on the rationale behind the optimal selection process. The

methodology is applicable to all spatially extended dynamic systems. In this report, special attention

has been paid to large, flexible structural systems such as large space structures.

We uncouple the optimization problem from the identification problem using the concept of

an efficient estimator (e. g., the maximum likelihood estimator as the time history of data becomes

very large)[ 111. For such an estimator the covariance of the parameter estimates is a minimum.

Using this technique and motivated by heuristic arguments, a rigorous formulation and solution of

the OSLP is presented.

3.2. Uniqueness of Identification and Local Optimization

The iterative nature of most identification schemes require us to differentiate between two

distinct, and often times confusing, criteria for the sensor location problem.

(1) Uniqueness of Identification r

The idea here is to locate sensors in such a manner that no matter what initial guess (of the r

parameters or functionals) one starts off with in the iterative scheme, the identification will

converge to the unique "actual" system. Alternatively put, one wants to locate sensors at locations

which yield information that can unequivocally tell us the parameters of the actual system. Using U'

records obtained from such locations, different initial guesses would nMt yield different estimates of

the parameters (or functionals) from those of the actual system. Section 2 of this report dealt with

.
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this aspect for a cantilever bending beam, a commonly used substructure in structural design.

Such nonuniqueness problems if they in fact did exist could indeed lead to not only incorrect

identification of structural system parameters, irrespective of the actual estimator used, but could

also lead to incorrect estimates of quantiies of engineering significance like bending moments and

shear forces within the structure. Such incorrect estimates would directly affect our ability to assess

the structural integrity of the system and our ability to control it appropriately.

(2) Local Optimization

If however, one has a fairly good idea of the parameter values, the initial guesses would be

fairly close to the actual values. Thus, provided the measurements are not too noisy, one would

not be likely to converge to a solution other than that represented by the actual system. Having

restricted the search space in this manner, so to speak, through the use of a good initial guess, one

needs to locate sensors in such a manner that having started with these approximate estimates, the

records obtained have the greatest information to improve the estimates. As opposed to the

",global" convergence (starting from "any" initial guess) which Section 2 addressed, this section

looks at the development of a methodology for optimally locating sensors in the context of "local"

convergence (starting from a "close" initial guess). In Section 3.9.3 we will further illustrate some

of the differences between these two concepts.

IL
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Figure 3. Nodal displacements. xj. of a system
subjected to external dynamic loading F(t).
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3.3. Model Formulation

3.3.1. System Model

The study of physical systems which can be adequately represented by linear constant

coefficient differential equations will be considered in this sequel. Though most large complex

dynamic systems are spatially continuous in nature, often, suitable discrete models can be

formulated for engineering applications. In fact finite element and finite difference methods have

become common in the reduction of physically continuous systems to mathematically discrete

models.

Though the development of the optimum sensor location (OSL) criterion will be shown to be

unrelated to the nature (linear, nonlinear, time-variant, time-invariant) of the system S under

consideration, let us for the moment consider a linear dynamic vibrating system so that we have a

vehicle for developing the methodology.

The governing differential equation of motion for a linear dynamic system may be considered

as:

MX + CX + KX =F(t); X(O) =X 0 , X(O) =X 0  (69)

where X0 and X0 are the given initial conditions for the system. The constant coefficient matrices

M, C and K are each of dimension (N x N). The M matrix may be considered as the lumped or

the consistent mass matrix (as is often the case in structural analysis), C as the damping matrix and
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K as the stiffness matrix. X is an N-vector whose components, x , may be considered to be the

displacement response (at the nodes of the finite element or the finite difference mesh) of the system

shown in Figure 3 to the input vector {F(t)}N. One or more elements of the coefficient matrices,

in equation (1), may constitute the unknown parameters. To "best" estimate these parameters, one

would locate sensors in the system in such a way that the measurements obtained thereat are most

informative about the estimated parameters. To accomplish this task, let us collect all the possible

unknown parameters in a vector 0 of dimension L. Hence

= M I O C I OK > T(70)

where the subvectors 0M , 
0c, and 0K have dimensions a, b, and c, respectively. The superscript T

indicates vector transpose throughout this dissertation. In general, a, b, and c are each at most

equal to N2; however, in many dynamic systems, the coefficient matrices in equation (69) are

symmetric. In such a case a, b, and c are each at most equal to (N + 1)N/2.

3.3.2. Measurement Model

The response of the dynamic system is assumed to be measured using an m (m < N)

available sensors. Solution of the OSLP is equivalent to the selection of the m locations out of N

possible such locations so that the m time history response obtained thereat yield the maximum

amount of information about the system parameters.

To formulate the measurement model, let us first assume there are exactly N sensors
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available, so that each component of X is measured (i. e., m = N). These measured responses can

be mathematically represented by the N-vector Z as follows:

Z.(t) = g- [X(O, t) ] + N.(t)], j = 1, 2,...,N (71)

where Zj is the j-th component of Z(t), functional gj represents the "measurement process", and the
r

dependence of the response X on the parameter 0 is explicitly noted. We shall assume that g is a

memoryless transformation of the system output which yields the measurements. The
measurement noise N.(t) is taken as nonstationary Gaussian white noise with a variance of * 2(t).

• I

Therefore,

E[N (tl)Nj(t2)] = 2(tl) 8 0K(-j) 5D(tI - t2 ) (72)

where SK and 5D stand for the Kroneker and the dirac-delta functions, respectively. Having

measured each element of the response vector X, a total of m out of N responses need to be

selected so that they contain the most information about the system parameters and are maximally

sensitive to any change in the parameter values. This "selection" process can be represented by an

m-dimensional vector Y such that
I

Y(t) = SZ(t) (73)

where S is the (m x N) upper triangular selection matrix with each row containing null elements

except for one which is unity. The m different components of Z selected to be measured are so

44

. . .%..
- . ~. .- - - - - - - -'



ordered in vector Y, that if the element in the i-th row aid k-th column of S is unity, the (i+l)-th

row can have unity in its ,-th column only if 2 > k. The matrix S then has the property so that

matrix P =STS is an (N x N) diagonal matrix with unity in its i-th row if, and only if, Zi is selected

to be measured. The elements of P are otherwise zero. Hence, one can write

Y(t) = Sg[X(0, t)] + SN(t), (74)

or

Y(t) = H[X(O, t)] + V(t) (75)

If gi is linearly related to the response xj, in general, then

H[X(O, t)] = SRX (76)

where R(t) in equation (76) can be thought of as a dynamic gain matrix. In the case that gi is

related to the response xi only, matrix R will reduce to a diagonal matrix, Diag(plp 2, ..... PN)"

The problem of locating sensors in an optimal manner then reduces to determining the

selection matrix S defined above. Alternately put, one needs to determine the m locations along the

diagonal of the matrix P that should be unity. These locations must be so chosen as to obtain the

"best" parameter estimates.
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3.4. Efficient Estimator and the Cramer-Rao Lower Bound

3.4.1. Conditional and Unconditional Estimation

In this section we shall consider two types of estimations. (1) The conditional estimation

problem results when 0 is an unknown constant, and/or when the a priori probability density N

function P(0), is not known. For this type of problem the expected value of the parameter estimate

equals the true value of the quantity being estimated and is often referred to as conditionally

unbiased estimation [ 12,131. (2) In the unconditional estimation problem the unknown parameter

0 is characterized by a known prior probability density function. In this type of problem the

expected value of the estimate equals the expected value of the quantity being estimated and is called

unconditionally unbiased estimation [12,13].

Unconditional estimation is more general; however, in many situations when the probability

distributions of the parameter estimates are not know, one can not utilize them. Suppose it is

desired to find an estimate of the parameter vector 0; if the joint density Po(0) is not in hand or 0 is

not a random vector, then conditional estimation could be used. 3

In the analysis of flexible structures, an example of conditional estimation may involve

determination of the structural parameters of a space structure from noisy observations. In such a

case, the unknown parameters, say the member stiffnesses, are considered as unknown constants
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which remain constant even after many observational measurements are made. An example of

unconditional estimation, on the other hand, involves some knowledge of the probability density of

the unknown random parameters.

3.4.2. Cramer-Rao lower bound (CRLB) and Cramer-Rao (CR) inequalities

The lower bound of the covariance of the estimation error was first proposed by Cramer and

is called the Cramer-Rao Lower Bound (CRLB) [11, 14]. This CRLB is related to the minimum

error between the estimates and the actual value of the parameters to be identified in the sample

distributions given. The CRLB is a nontrivial lower bound on the covariance of the estimate.

Unfortunately, the CRLB depends upon the bias of whatever estimator is used. However, for

unbiased estimators the CRLB is indeed independent of the estimator that might be employed. For

any chosen arrangement of sensor locations, expressions for the conditional CRLB (CCRLB) and

the unconditional CRLB (UCRLB) for unbiased estimators are derived in [15]. They are:

r -1

T( T

CCRLB = {jHHOt) ae ) 2 (t)dt) (77)

Pt P(0). (CCRLB) 1'dO (78UCRLB = (78)

S.o

Hence
S.
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E[ (- -) (6- 0)T ..-CCRLB (79)

and E[(0- 0) (0 - 0 (80)6n 5[0 ) (6- 0)T,0I Z UCRLB (80

I

The right hand side of the inequalities (79) and (80) can be obtained from equations (77) and (78),

their left hand sides depending on the type of estimator used. Inequalities (79) and (80) are known

as the conditional and the unconditional estimation covariance inequalities.

3.4.3. Efficient estimators
S
'

If an unbiased estimator achieves the CRLB, the estimator is called efficient. An efficient

estimator may also be called an optimal unbiased estimator since it achieves a minimum "Expected

Square of Estimation Error" (ESEE) and no other unbiased estimator could, in fact, achieve a lower ,

ESEE. It is of some interest to also note (see equations 79 and 80) that an unbiased, efficient

estimator is also a minimum-variance estimator. It is however, unfortunate, that there are no

general methods for constructing efficient estimators. But one commonly useful class of

estimators which is asymptotically unbiased and efficient is the one which comprises the

conditional and unconditional maximum likelihood estimators ([ 141,[ 16]). Hence for efficient

estimators (minimum covariance) the inequalities [5] become equalities. Therefore, one can write

E[(0 - 0) (0- 0)T] - CRLB (81)

In this sequel such as estimator shall be assumed to exist. i-,
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The expression inside the brackets in equalities (77) and (78) are known as the Fisher

Information (F. I.) matrices 115]. Therefore maximization of this Fisher Information matrix

(maximizing a certain norm of the matrix; such as the trace norm, etc...) would yield the minimum
C..

possible value of the covariance of the estimation error [17,18]. It is of some interest to note that

- when using efficient estimators, the covariance of the estimation error is known with no regard to

the actual form of the estimator.

The Fisher Information Matrix, Q(T), for conditional estimation of 0 (using equation (77))

can now be written as:

Q(T) = ! (t)dt (82)

0

3.5. Optimum Sensor Location (OSL) for Conditional estimation ofVector-Valued

Parameters

3.5.1. Some Motivative Thoughts and the Fisher Information Matrix (F. I.)

Consider a case in which one tries to estimate one parameter, 01, which is to be identified in

a dynamic system model with only one sensor provided. One would want to ideally choose a

location i (out of N possible such locations) such that the measurement y, (t), i E [ 1, N], t c (0, T) at

location "i" yields the "best" estimate of the parameter 01. Heuristically, one should place the

sensor at such a location that the time history of the measurements obtained at that location is most
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sensitive to any changes in the parameter 01. Hence, in equation (75) it is really the slope of

H[X(O, t)] with respect to 01 that needs to be maximized. However, since only the absolute I.

magnitude of this slope is of interest, it is logical to want to find i (or equivalently determine the I

selection matrix S described previously) such as to maximize (aHl-0 1 )2. Since this quantity is a

function of time one would want to locate a sensor which maximizes the "average" value of

(aH/a01)2 over the time interval (0, T) during which the response is to be measured. This leads to

maximizing the following integral: .

2 ,

T aHI

qi(() 0 dt. (83) I.

When there is more than one parameter to be estimated, and the number of sensors is greater

than unity, this intuitive approach needs to be extended in a more rigorous manner. In such cases

recourse to mathematical treatment is necessary, and we shall see that such treatment will be in

agreement with our heuristic solution.

3.5.2. Fisher Information Matrix in terms of the measurement response for

vector-valued problem

It is shown that for any conditionally unbiased estimator of 0 the covariance estimation error

can be written as
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E[(O -) (0- )"/ (t)d  (84)

0

The integral on the right hand side of the inequality (84) is the well known Fisher Information

matrix, as defined previously in equation (82). In order to reduce the err-or in the estimates, one

would equivalently want to maximize a suitable norm (e. g., Trace, etc.) 116] of the Fisher

Information matrix Q(T). Therefore, introducing equation (76) into equation (82), (this constitutes

an extension of the equation (83) which we heuristically derived for the scalar case, to the vector

situation), one obtains:

T TRT
X XRPRX

Q(T) f I 2 0 dt, (85)

where the ij element of Xe can be written as:

[X0ij , i [I,N], j C (1,m) (86)

where X = { x1} N and 0 ; {d i L" We note that the Fisher Matrix is symmetric and is dependent on

the length of the record available, as well as the locations of the sensors as determined by the matrix

P.

If the m locations where the sensors are to be placed are denoted by sk, k = 1, 2,..., m, then
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P X= (7)

where the (N x N) diagonal matrix l. has all its elements equal to zero except the element of the

sk row, which is unity. Noting that P is a diagonal matrix, equation (85) can be simplified to yield

M T T TX dt
Q[T;s1 ,s2. sm; S,0;I] - 2 J k 0 (88)

' So(t)

where r, is the sk row of the matrix R. Also in eq. (87) explicit mention is made of the

dependence of the Fisher Matrix on the time length T of the available data, the system S, the

parameter vector 0, and the time-variant input I. If the matrix R is diagonal, with diagonal elements

PI, P1, PNI then the ij element of the matrix Q, after some manipulation, reduces to

Q.[T;s~l = ;SOf dt (89)
k= 02 aei e (t)

One notes that each element of Qj represents the cross-sensitivity of measurement with respect to

the response xA of node sk.

The optimal sensor locations are then obtained by picking m locations sk, k = 1, 2.. m, out

52



-'

a.

of a possible N, so that a suitable norm of the matrix Q is maximized (e, g., the trace norm, etc...),

[13, 16]. This may be specified by the condition

max IIQ[T;sl,s2...,sm;S,0;l1II . (90)
s E (.N)

.

3.5.3. Linear and Nonlinear Systems

It is important to note that while nothing was said about the nature of the governing

differential equations describing the system models, the methodology presented up to now is quite
DON

I. valid for systems with non-linear differential equations. It should also be noted that the criterion
p

developed by equation (89) does not hinge upon the linearity of the system. The only equations

involved are the measurement equation (76) and the relation (84). Therefore, the methodology

introduced herein may be applied to the systems governed by non-linear differential equations.

3.6. Choice of Matrix Norms

As mentioned above, Q is a matrix and therefore it is necessary to use a suitable scalar norm

of it, 11Q11, to obtain an idea of the information content, about a parameter vector 0, available from

sensors at one or more locations, given the input, 1(t).
a.-.

Various norms may be used as scalar measures of performance. Some commonly used

norms are[ 191:

(1) D - optimality: Minimize the determinant of Q1 or eqivalently maximize the aeterminant

.5
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of Q

(2) A - Optimality: Minimize the trace of Q

(3) T - Optimality: Maxinize the trace of Q.

An important advantage of D - optimality is its invariance under scale changes in the parameters and

linear transformations of the output. However T - optimality has the advantage that the trace

operator is linear and therefore Trace(Q) can be expressed as

Trace{Q(T)) = s(T) (91)
k=Il

where

Ti )XaX ~x P(t) 2qs T Trace fdt (92)
k 0 i W(t) I

When m is large this relationship allows the optimal sensor locations, got by maximizing

Trace(Q) (as given by (90), to be obtained in a simple sequential manner. The algorithm to be used

can be described in the following three steps.

Step (1): For each sk. k = 1,2, . N, determine qs
a k
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Step (2): Sort the N numbers qs , k = 1,2, .. N, in an array of descending order

starting with the largest;

Step (3): The s,, k = 1, 2, ...,m locations that correspond to the largest m values of

t are the m optimal sensor locations.
Sk

Should r sensors be already fixed in place at locations sk, k = 1, 2,..r, the best locations for

an additional m sensors can be found by including a further step in the above alogrithm. After

performing Step (2) perform the following two steps.

Step (2'): From the sorted array obtained in Step (2) above, delete-q k=l,2,...r

'pk

Step (3): The q-, k=1,2, ... m locations corresponding to the largest values in the

remaining sorted array yield the optimal sensor locations for the next m sensors.

Due to computational ease and efficiency with which the Trace criterion can be used, and the

simplicity with which the maximization defined in (90) can be carried out, in this sequel we shall

exclusively use the Trace criterion. Comparison of the results between A, T and D - optimality will

be left for a future study.
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3.6.1. Analytical Interpretation of the Trace Norm

In this section we present a more formal interpretation of the Trace norm. Let us introduce an

error criterion

J = E0,y[f( 0, 0 )], (93)

then

2
= e  y e  (,O+ (-O)+-(0-O) T -( 

-  , (94)

where 0, 0 and Y are the true value of the estimated parameters, the estimate, and the measurement

yielding the estimates, respectively. Since f(0, 0) is a function of error between the 0 and 0,

then f(0, 0) = 0. Hence,

Ee 2-(0-0) (95)

of Cf
However, if 6 isclose to0, then - --. Using this approximation one can write

J..E (I= E w0 (bO E tOT  - -)] (98)
0. oI Ylea§
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Notice that if 0 is an efficient unbiased estimator, then E(0) = 0. Hence,

I
A

Eyle(6- 0) =Ey (0 ) -Ey i (0)O0 (97) .

Consequently one can further simplify J. Therefore,
w

a2• f

JE E 1(98

Noting that

Cov6 =EYj(6- 0) (0- 6)TIO], (99)

after some matrix manipulation one can write

J =E °  -Trace (.L Cov ).(100)
a62

To minimize the error between the estimate 6 and 0, one would want to minimize the right hand

side of the above equation. If f is quadratic in 0 then, the second derivative of f with respect to 0 in

(100) is a constant matrix.
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3.7. Application to a two-degree-of-freedom linear system

Consider the problem of finding the optimal sensor location in a two mass system, modelled

by the two-degree-of-freedom of Figure 4, so as to "best" identify: (1) the mass ratio, A, of the

first to second mass; (2) the stiffness ratio, B, of the lower to the upper spring; and (3) the

damping coefficient.

The governing differential equation of motion can be expressed as
r,

MX + CX + KX = Wf(t); Xk(0) = 0 , X(0) = 0, (101)

where X =<x1 X2>T, C = aK, W = <Am m>T and f(t) is the base excitation. The matrices M and

K are

M=, 1  and K=- 1  +1 k. (102)

Let s denotes the lower mass location and s2 the upper mass location. The selection

between the locations can be equated to determining the one non-zero element of selection matrix, S

(Ix2]' with the measurement H(t) defined by H(t) = SX + V(t), where V(t) is assumed to be

stationary Gaussian White Noise (SGWN) with w(t) = 4f0 . As x, denotes the lower mass

response, if S = [1 0) the lower mass is selected for measurement; if S = [0 1] the upper mass is

selected. The location si would then be preferred over the location S2 for identifying the parameter
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A (for instance), if Q[T,sl] > Q[T, s2], where T is the time that the measurement is taken,

ax-

A2 1 (xa [1 0] aA
QI - 1 15) iJIjTo so ax dt

2 D

aA

_A dt (103)

lrov

a n d , ,

ax"

Q2TA Q (T, s2)A - J A aA/0o1 x

aA

T 2

=dt 
(104)

2S

Since there is only one parameter being estimated (say A), the Fisher Information matrices reduce

to scalar quantities. "
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The dependence of the OSL on various type of the base excitations has been studied by

considering various base accelerations. In all the examples that follow it will be asumed that the

parameter values corresponding to the MK, and C matrices (of equation (69)) are provided in

appropriate and consistent units.

3.7.1. Example of the 2-degree-of-freedom-system (2-DOFS) subjected to

impulsive base excitation

Consider the OSL problem for the "best" (minimum covariance) identification of the

parameter A (given the parameter B and (x) of the two-mass system governed by the differential

equation (28) using an impulsive base excitation (f(t) = & (t)). Figure 5-A shows the plots of the

ratio of the information matrices Q1 (T)/Q 2(T), for T = 50 seconds, for various values of the

parameters A (which is to be identified) and, a* = w 0, where o = k .Points on the graph

with ordinates greater than unity indicates the optimal location to be the lower mass level and

vice-versa. The closed form solution for the undamped case is provided in the Appendix A.

Figure 5-A indicates that the optimal location in most cases, for the range of A considered, is the

upper mass level. However, we observe that for some small values of A and a* the OSL is the

lower level. We note, interestingly enough, that the optimal sensor location for identification of A

actually depends not only on the value of B and (x* which are presumably known, but also on the

value of the parameter A which itself is to be identified! Thus to be able to ascertain the

optimal sensor location some apriori assessment of A is necessary. This brings us back to our

discussion of section 3.2 where we emphasized that the optimal sensor location problem is looked
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at herein in the "local" context.

Consider next the OSL for the "best" identification of parameter B (given A and a). The

exact solution of this problem is also provided in Appendix A. Figure 5-B shows that the optimal

location for identification of parameter B, using an impulsive base input, is again the upper mass

level for the range of B, however, and t* > 0.05 ( a* = ao, 03 = kT/m ) the trend appears to be

more and more in favor of the upper mass. This seems intuitively correct for as B becomes

larger, the lower mass becomes immobile and the OSL would be the upper mass.

3.7.2. Example of the Two degrees-of-freedom-system (2-DOFS) subjected to

sinusoidal base excitation

Consider the OSL for "best" identification of parameter A, B, and aX of the two-mass structure

governed by the differential equation (101) when f(t) = A Sin(Ot).

Figure 6-A and 6-B show for convenience how the system damped natural frequencies,

normalized with respect to co ( co = 4- ), change with changes in A and B. In Figure 6-A, the

effect of A values in the vicinity of A < 1 on the natural frequencies is highly noticeable. In Figure

6-B, however, the frequency curves become less sensitive to changes in B for large enough values

of B.

Figure 7-A is associated with the solution of the OSLP for estimating the parameter A or B

using sinusoidal base excitation. This figure shows that as the normali ,ed driving frequency y (y
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co/o.) varies, the OSL changes. The exact forms of the Fisher Information matrices are expressed

in Appendix B. We observe that for the case when ct* =0,

= (I - ) (105)

Q2

when estimating the parameter A (or B). Figure 7-A indicates that the OSL is always the upper

mass level for y < 12 and the lower mass for y > 12. The dependence of the Fisher value ratio

a* is also illustrated. It is of some significance to also note that the information at both floors

vanish (for estimating A) when a* = 0 as y 1 1. Thus the region in frequency space around y = I

is not a good region for exciting the base of the structure sinusoidally if the aim is to obtain records

for the identification of A. The information from records available at either level is however of

equal value (so far as estimating A is concerned) for y = 0 and y = /-.

For the estimation of B (given A and a* = 0) the dimensionless driving frequency

y = + A (derived in Appendix B ) yields no information on B from records at either of the

two mass levels. On the other hand, the responses at the two mass levels yields identical amounts

of information on B at y = 0 and y = "4 (for A 1 1), as indicated by the value of Q1/Q 2 = I at these

frequencies.

The value of the QI/Q 2 = 0 at y = I is indicative of the fact that the upper mass level is a far

better location for a sensor (when estimating B) and a* =0.
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Figure 7-B indicates the OSL solution for the situation wherein a* (cc* = aco) is to be

estimated. The figure indicates the dependence of the OSL on the driving frequency 'y and the

normalized damping value, ae*, for the system. For the particular system chosen, for example,

when y 0.16, the OSL is the upper mass level. For values of Y >0.16, the OSL depends on the

value of the critical damping = a co./2, where (o. is the natural frequency of the system (n = 1,

2). As the damping increases, the OSL moves towards the upper mass.

3.7.3. Example of the 2-degree-of-freedom-system (2-DOFS) subjected to zero

mean Gaussian white noise (ZMGWN) base excitation

Consider the same two mass structure governed by differential equation (101). Let f(t) be

taken as a sample of Gaussian White Noise (GWN). Figures 8-A, 8-B, and 8-C are associated

with the OSLP for estimating, A, B, and a* (at* = czo 0) respectively. For each case five different

realizations of a GWN process were used. The expected values of Q1/Q2 are indicated in each plot

with a solid line. The dashed lines indicate the one-standard deviation, (1-a), band in which the

ratio of the Fisher's lie. The results indicate that for damped structural systems (a* > 0),

the OSL in most cases is the upper mass level. Hence, one would want to locate the sensor on the

top mass to obtain records yielding estimation of A, B and a*.

3.8. Optimal Sensor Locations for N-Degree-of-Freedom Linear Systems

In this sequel the solution to the OSLP will be generated for multi-degree-of-freedom linear

systems. Consider the N-degree-of-freedom, classically damped, dynamic system whose
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governing differential equation of motion can be written as:

4A "MvX+C + KX =F(t), X(t) = Xo, X(to)='Xo, (106)

where X0 and X 0 are the given initial conditions for the system. Using normal mode method the

response vector X(t) can be determined. Introducing

X(t) = (t) (107)

where D is the (N x N) weighted model matrix (transformation matrix) and 1l(t) may be refered to

as the N-vector of generalized coordinates (response coordinates). Then,

71+24NaoNT+A1 = cTF(t), 1l(t o) = ¢TMXo, '(t o) - oTMX , (108)

where the (N x N) diagonal matrix 2 (sometimes known as the generalized stiffness matrix) is

[A] -4TK --Diag[ ool .2 IO)] (109)

The solution of equation (107) is given as

t

1i(t) -- Ti0 u(t-t)+1 0i vi(t - to) + hi (t-)p i ()d' (110)

10

d where i i and iOj art the initial conditions and,
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b

ui(t) = EXP (-4ioit) Cosi t + . Sinot (111)

vi(t) = -1 EXP(-_. it)Sincod t, (112)
(Od'.L

hi(t) = vi(t), (113)

kd= (i e, and (114)
!S

pi(t) = (DTF(t), i = 1,2,...,N. (115)

If the OSLP is to be solved for estimation of the parameter vector E, where E was

previously defined in eq. (70), one should differentiate equation (105) with respect to 8. This

yields:

MX e + CX + KX =F (t)- (M X+C X+K X); X (t 09 = (t 0 (116)

where

ax. .

[. M(117)

[M X] =(M x M x M X) (118)
8 0 0 .
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x[C X=1 C xI C0 x..I c xl (119)
001 0201

[K X] = K0 Xi K X .. K X} (120)e e2 eL

[F (lij- ; with (121)

S °~

e < e>T = 8 T (122)
M. C. K L J L

for i= 1,...,N, and j=l,....L.

Introducing

XE = (z(t) (123)

yields

%I.

a.

+ 2NNiz + Az = G(t); z(t o) =0; z(t)= 0 (124)

where

G(t) =T[F -(MX+C X+K X)]. (125)

Equation (125) can f'uther be simplified using (123) to

.7 II
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G t) (D[ (M + CaOn+ K en)] (126)

where TI and Tj can be obtained by proper differentiation of eq. (109). This may be shown as

follow

Tl~) TI0 Wj(t-to) + TIo Y (t - to)+f (t-rpcd(17

Wi~(t) EX=kot (td + 'S)pn)d t (127)

[ Od.J

Yj(t) =EXP(-4,co~t) [C5~~ t)SinAdt (129)

hi(t) =Yi(t), and (130)

[ Also

jw 701 it to+ 1iY~ o f h~ ~iT 12
E to
where =n ~t-t)+T 0 Y( 0  )~rd 12
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- / _ +_Sin____tWi(t)= EXP(- it+ .(d(piwi (133)

-[d. + (4io)i)2] CoSOd.tI I

Yi(t) = EXP(- 4ioit) { Q) (d Sifctdt (134)

- 2i i CosoOd.t
%1

hi (t)=-Yi(t) (135)
4(135)

pi(t) = 4OTF(t), i = 1,2,...,N. (136)

Therefore, substituting equations (127) and (132) into equation (126) gives G(t). Consequently

the solution of equation (124) can be written as:

4.t

zi(t) = F hi(t -t)Gij(t)d(t) (137)
f

where hi(t) is the same as in eq. (113). Notice that the initial conditions in eq. (124) are zero. This

is due to the fact that the initial conditions of (106) are known constants.
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If in the eq. (106) we assume that [C] is expressed as a linear combination of [K] and [M],

then eq. (126) can further be simplified. Namely,

C = 2oxK+213M (138)

where a, and 03 are known constants. Hence in equation (108), the percentage of damping, {N,

can be expressed as:

= ac. + 1 i = 1,2,...,N (139)
(1.

V

Then eq. (126) may be written as:

G(t) = 4 T{F - [MeO(i'+2[3) + K O(l+2caj) + 2(3 M+OK)ri") (140)

To futher simplify eq. (140), let us consider the following three cases:

(1) If vector 8 contains eM only (estimating masses), then

G(t) = 1 [F - M e (ij+2pj)] . (141)

(2) If, however, vector E of eq. (70) only contains the subvector OK (estimating stiffness),
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then

G(t) (= T [F - K 0(71+21ftl] (142)

(3) Finally if vector E) is reduced to subvector )c , ac = p( 1], then

G(t) = <0TF -2A " F -21> (143)

a

where I is the identity matrix. It should be realized that if the input F(t) is independent of 89, then

Fo, would be cancelled all through this discussion.

Once the solution of eq. (116) is obtained using (123), the Fisher matrices may be evaluated

using eq. (85). Hence,

e r z

Q:= G f < F -A dt (144)

k=1 to (t)

3.8.1. Some useful results

Let us assume that for a given N-degsholdbereeali edom dynamic system one seeks the solution

of the OSLP for the purpose of all the system model parameters n. L. Let R= I and h(t)= W0

8S
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With the equation governing the motion expressed (69), following the solution steps presented in

the previous section, one can write:

X8 =[01 NxN[z1Z2 "-ZL]NxL (146)

To obtain the Fisher Information Matrix, we shall utilize equations (85) and (88). Hence using eq.

(88) one can write:

"0
0

I 1 E- s."th row, (147)
0

0

0

and

H sk__ 71T . (148)

Therefore, equation (144), under our assumptions with to= 0, can be written as:

Ole
'.1
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.0 -- .j ...-J. -)

T T
Z2

[HX Jz ~ ~ S I Z2  zL>dt (149)
k=1 0

T
ZL

where m is the number of sensors to be used. The above equation can further be expanded to:

zT H z .. zT H
TH zz..

M T Hk

dt (150a)

ZH Z .. z 4 H zL

Equation (150) is the Fisher Information matrix for the given N-degree-of-freedom dynamic

system. If Oi is =Q to be estimated, then the i-th row and the i-th column of the matrix of equation

(150) would be absent. Therefore, if 01 and 63 of E) were to be estimated, then the first and the

third rows and columns in the matrix equation (150) would only be presentedl. Namely,[T T
zHz ZIH kZ3

'~ Z d J T T ci.(150b)
k= z3 H z z3 H

_k IIkZ
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(b)

Figure 9. Multi-degree of Freedom Systems for Numerical Studies
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This result is useful for computational purposes.

3.9. Applications to Multi-Degree-of Freedom Systems

Figure 9 shows two different multi-degree-of freedom systems that will be used to illustrate the

OSLP methodology developed. The numerical results obtained will indicate the nature of the

solutions for the OSLP and oftentimes their non-intuitive character. To illustrate the dependence of

the OSL on the nature of the location (s) and types of inputs, two types of excitations have been

* used -- transient and impulsive.

3.9.1. Fixed-Fixed System of Figure 9(A)

Figure 9(A) shows a four degree of freedom system. The system parameters are: m, =m 2=2;

m3=m4=1; kl=k2=100; k3=75; k4=50; k5=50. The damping is taken to be of Raleigh form (i.e. C=

2aM + 213K) with a=0.001 and 3= 0.04. The measurement noise 'F(t) is taken to be W0"

Further, it is assumed that we have the ability to apply an impulsive force f(t) (to any one of

the masses mi, i = 1,2,3,4) whose impulse

I- f(t)dt = 10 (151)

0

The parameter values provided are assumed to be in appropriate and consistent units. We shall

investigate the following:
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1) If the impulsive force described above is applied to one of the masses, say mass mnJ, j 

(1,4), then where should we locate a sensor to best identify one of the stiffnesses ki, i E (1,5)?

2) Were we required to place more than one sensor to identify ki how would we find the

optimal locations ? Could we rank order the locations 1,2,3,4 shown in Figure 9(A) indicating the

order in which they should be populated by sensors so as to best identify ki ?

3) Can we get an idea regarding the information gained (or reduced) by placing a sensor at

location r as opposed to location k (rk E (1,4)) ?

4) Given that we want to identify ki using an impulsive force which can be applied at one of

the masses, at which mass should it be applied and at which locations should the corresponding

responses be measured for best identification?

5) What are the answers to questions (1) through (4) above if we want to identify not just

one stiffness ki but a group of them, say k1 and k, ?

Figure 10(A) shows how the information on the stiffeness parameter k1 changes with time

for records obtained at various locations when an impulsive force is applied at mass m1 with 1= 10

units. As seen from the figure, the information obtained from Location 2 (see Figure 9(A)) is the

maximum and this says that the sensor (for identification of kl), if only one such sensor be

available, should be placed at Location 2. We note that our intuitive idea of using a sensor at

Location 1 would have provided about 36% less information than the optimal sensor location
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ID

obtained. The graph also gives the rank ordering for optimal sensor locations as { Location 2,

Location 3, Location 1, Location 4), Location 2 being the best, Location 4 being the worst.

Figures 10(B), 10(C),10(D) and 10(E) indicate the optimal sensor locations(OSL) for

identification of the parameters k2, k3 , k4, k5 respectively using an impulsive force applied at

Location 1. We note that the OSL depend on the parameter that is required to be identified. Also of

interest is the fact that the Fisher Information, Q(t), at each location is a function of time. Thus

Figure 10(B) shows that were k2 to be identified using simply a two second length of record

beginning at zero time, then Location 1 would be the optimal location. However, the use of a

longer duration of record for identification of k2 would yield Location 2 as the optimal location as

seen in Figure 10(B).

Figures 11, 12 and 13 show similar results for identification of the stiffness parameters using

an impulsive force (with I = 10) applied at masses m2 , m3 and m4 respectively. We see that the

extent of information obtained about a parameter for the purposes of identifying it and therefore, in

general, the optimal sensor locations, depend on the location where the force is applied. Thus

figures 1O(A) and 11 (A) show that the information about the parameter kI from measurements

taken at Location 2 is about 1.7 times greater if the impulse is applied at mass n 2 rather than at

mass m. In fact figures 10(A),I I(A), 12(A) and (13a) show that to identify k1 using one sensor,

the best location for both applying the impulsive force and for obtaining a measurement record, is

Location 2.

Figures 14(A) indicates results for the situation where both k1 and k5 are to be simultaneously
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identified using noisy measurements at one or more locations with an impulsive force (I=10).",

"I

applied at mass m3. While the identification of k1 alone would show the OSL to be at Location 2

(Figure 12(A)), and that of k5 alone to be Location 5 (Figure 12(E)), the OSL for simultaneous
I

identification of both these parameters is Location 3. The Locations can be rank ordered as {

Location 3, Location 2, Location 4, and Location 1), Locaton 3 being the best. Should more

sensors be available, they would then successively populate the mass Locations as per this ordering

so that identification of these two parameters can be best carried out. Figure 14(B) shows a similar

result except that the impulse (I =10) is applied now at mass m4. We observe that the rank ordering

of locations, as per our Trace criterion, has now significantly changed to (Location 4, Location 3,
S

Location 2, Location 1), Location 4 being the best. Having answered the five questions that were

posed above, we next go on to verify some of our results. -

3.9.2. Verification of Optimal Sensor Locations as Determined by the

Methodology

Consider the results depicted in Figure 13(D) where the OSL is obtained for the situation

where an impulsive force (I=10) is applied to mass m4 and identification of k4 is intended. The

system parameters are those chosen in Section 3.9.1. The correct value for k4 is 50 units. The

results show (Figure 13(D)) that Location 4 is far superior to Location 3. Parameter identification

using the reccursive prediction error method (RPEM) was carried out using records obtained from '1]
Locations 3 and 4 in response to the impulsive force at m4. For comparison purposes the same

identification scheme (and computer program) was used for records obtained from both locations.

The identification scheme was started off with a close-by initial guess, namely k4=40. The results
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of this identification are shown in figures 15(A) through 15(D) for four different levels of

4. noise-to-signal ratios (indicated in the figure by N/S). To provide a feel for the extent of noise

4. prevalent in the records we show in Figure 16 and Figure 17 the noisy displacement records used

for identification for two noise levels: N/S= 0.2 and N/S = 0.5. We note that while Locations 3 and
.1

4 provide about the same accuracy of identification for N/S values less than 0.1, as the N/S ratio
5"

increases, Location 4 as predicted by Figure 13(D) is indeed superior. In fact identification of k4

can be carried out with reasonable accuracy even when N/S=1.0 as seen in Figure 15(D) with

measurements from Location 4. On the other hand measurements from Location 3 cause the same

identification scheme to diverge for N/S--0.5 and N/S=1.0.

3.9.3. Fixed-Free System of Figure 9(B)

We present now an example of OSL for a transient excitation provided at the base of the

system depicted in Figure 9(B). The system parameters are: ml=m 2=2; m3=m 4=1; m5 =0.5;

kl=k2=100; k3=75; k4=50; k5=50. The damping is again taken to be of Raleigh form (i.e. C= 2aM

+ 213K) with cx=0.001 and P= 0.04. Figure 18 shows the base acceleration and the results for

optimal sensor location for identification of parameter kI. It is interesting to note that though

considerations of uniqueness in identification would dictate Location I to be optimal,

considerations of identifying the parameter k1 starting from a close-by estimate shows that Location

4 is optimal. This example therefore brings out the difference between "global" convergence and

"local" convergence as discussed in Section 3.2.
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3.10. The Kinetic Energy Criterion

Some investigators have proposed that, heuristically speaking, displacement sensors be located at

locations where the kinetic energy of the system is a maximum. While this may be a somewhat

intuitive approach to the problem we have found that this Kinetic Energy Criterion does not yield.

in general, the optimal sensor locations. Firstly, such a criterion is not dependent on the parameters

that are required to be identified as any such criterion should. Secondly, and perhaps more

importantly, our concern in locating sensors for best identification of parameters hinges around the

sensitivity of measurements to the parameters to be identified and not on the kinetic energy of the

system. For the sytem considered in Figure 9(A) the results shown in Figure 12(E) indicate that the

optimal sensor location is at Location 4. Figure 19 shows the response of the system at Locations 3

and 4 to an impulsive force (1=10) applied at mass M 3 . Figure 20(B) shows that the Kinetic

energy(KE) at Location 4 is lower than that at Location 3. Yet Location 4 is obtained as the OSL

from Figure 12(E). This is explained by figure 20(A) which shows that though the KE at Location

4 is lower than at Loaction 3, the sensitivity (actually, its absolute value) of measurement to

parameter k5 is higher at Location 4 than at Location 3. The results of the KE criterion for the cases

depicted in figures 14(A) and 14(B) are shown in figures 21(A) and 21(B) respectively. Again we

see that the KE criterion would lead to a different and erroneous rank ordering of locations for the

simultaneous identification of k1 and 5.

3.11. Conclusions

We have in this section developed a methodology for optimally locating sensors for

parameter identification using noisy measurement data. The methodology is predicated on starting
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any such identification process with a near-by, close initial guess estimate of the parameters to be

identified.

The optimal sensor locations(OSL) are shown to depend on: 1) the nature of the system (the

structure of the differential equations), 2) the specific parameter values of the different parameters

in the system model, 3) the number of sensors to be used, 4) the duration of time over which the

identification is to be carried out, 5) the specific parameters to be identified, and 6) the nature and

location(s) of the input time functions (applied forces). A simple algorithm, which is

computationally efficient, has been developed for obtaining the OSL.

The methodology has been applied to a specific set of multi-degree-of-freedom systems and

numerical results have been obtained. The methodology provides a rank ordering of the locations

from best to worst. It also answers, in a rational manner, where to locate additional instruments,

given that several are already in place in a dynamic system.

The methodology has been validated (though in a limited sense only) by actually using data

from various locations and showing that those locations that are predicted to be optimal by the

methodology do indeed provide tha best identification of the parameters concerned from noisy

measurement data.

The results have shown that the heuristically obtained Kinetic Energy Criterion, which is

sometimes alluded to in the literature, has little to do with optimally locating sensors and, to that

extent, is inappropriate for use in developing methodologies relevant to such problems.

A
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SECTION 4. PRELIMINARY RESULTS IN DATA COMPRESSION

This section deals with finding the optimal measurement locations for a structural

system modelled by a single-degree-of-freedom oscillator, so that any one of the

parameters to be identified can be estimated with a minimum variance. The measurements

are assumed to be taken in a noisy environmment, and the section addresses both linear

and nonlinear, nonhysteretic systems. Besides the analytical relations deduced for the

optimal measurement locations, it is found that, in general, there may exist measurement

locations at which no additional information on the parameter under consideration is

generated. For the linear case, the optimal measurement locations are found to be

independent of the system response and the actual values of the parameters to be identified.

They solely depend on the nature of the excitation used in the identification prodecure.

Analytical results relating to the optimal measurement locations for minimizing the sum of

the variances of the estimates of some of the parameters are also provided.

4.1. Introduction

The identification of parameters in dynamic models for structural systems is a field that

is rapidly gaining importance. In this section, we attempt to study the optimal spacing of

measurements for a structural system modelled by a single-degree-of-freedom oscillator so

that the variance of one of the parameters being identified is minimized.

€..

We start with a linear oscillator and, using Fourier transforms, derive a set a linear
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algebraic equations. The condition on the measurement frequencies so that the estimated

variance (from noisy measurement data) of either the mass parameter, the stiffness

parameter or the damping parameter is minimal is derived analytically. It is also found that

there may exist a set of frequencies co, at which no additional information on that parameter -

is available, yielding no reduction in its estimated variance.

The determination of the optimal measurement frequencies depends solely on the nature
v*ew

of the forcing function used in the identification procedure and is invariant with respect to

the actual values of the parameters being estimated. a.

A numerical example is indicated to illustrate the analytically obtained results. The

method is then extended to find the optimal measurement times for structural systems

modelled by general nonlinear, second-order differential equations which represent

memoryless systems. It is shown, again, that a set of time points may exist at which

measurements, if made, will not yield additional information on the parameter of specific

concern.

Though the results obtained at this time are pruely analytical, it is anticipated that they

will help in the design of experiments, especially where data handling and reduction are a

major cost concern.

4.2. Problem statement

Consider a structure modelled by a single-degree-of-freedom system oscillator
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77-7

subjected to an excitation force q(t). If x is the displacement of such an oscillator, then its

equation of motion is

mi + cx + kx =q(t), x() =0, x(0)=, (152)

where the parameters m, c and k denote the mass, damping and stiffness respectively and

are assumed to be real numbers. Taking fourier transforms, this yields

-m62X(o)) + ico)X(co) + kX(o,) = Q(w), (153)

so that

l/X(o)) = (-mo)2 + icc) + k)/Q(co), co e[ill (154)

where we shall assume that the division on both sides of equation (153) is possible i.e.,

there exists an open interval, I , such that for all co e IQ, X (co) and Q (co) are not

identically zero.

We shall assume that the parameters m, k and c need to be identified, and we shall

direct our interest to finding if there exists a set of frequencies coi, i = 1, 2,... such that the

variance of any one of the desired parameters (i.e., m, or k or c) can be minimized by

using the data i.e., X (co) and Q (co) at those specific frequencies.

Relation (154) can be rewritten, after separating the real and imaginary parts, as
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N*Z4

rr
U(CO) 1 [ 2f(CO) -Lg() ft(t)[ Mn' "v J

W~OO = ) f(co) g(o) 11 kL~v' (155)

where we have represented

1/X(O) = U(CO) + iV(Co),

I/Q(o) = f(co) + ig(CO), (156)

and the measurements U (w) and V (0) are corrupted by measurement noise e1u (o) and

i v(o)-Defining

A Afo)T(5a
[aj(co)] = a (0)) [_-o2f(o) _og(o) f(W)]T 0 57a)

and

A A

[bj(o)] - b(w) = [-co2g(co) Wf(co) g(CO)IT (157b)

for each value of Co = o, i - 1, 2,..., N, equation (155) can be written and the BLUE

estimator obtained. This can be expressed by the relation

z = HO + F, (158)

where
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z = [U(o9dV(o 1 )U(0 2)V(C0)~~i)~z) T

H = [a((01) b(o 1 ) a(co 2) b(C0 2) ..a(co,) b(co,)]T, .HE [a(Co) E(O)a2) ()2)'"aC((o ) bV((0n)]T, 19

E[E =0andR = E~sT) -diag(al .,Ul 2 . . a,2 a, 2 ), (160)

IL

where or =a (w), i =1, 2,..., n. The covariance of the BLUE estimate of the vector e

becomes [11

P - (HTRlF)-l. (161)

where P is a 3 x 3 matrix whose diagonal elements P11 Ip 22 and P33 are the variances in

the estimate of m, c and k respectively.

4.3. Optimal choice of frequencies, cOk.

We shall now attempt to choose the frequencies oe 1 in such a way that the I th

element of P, Pi, is minimized. To that end we first differentiate relation (161) with

respect to ckto yield

p aH T 1 T i aH T i aR I1
- -R H+H R - HR -R HIP, (162)

~O) '-" 4

beck k [1o ....,
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Ie

so that a

aP 2

'Uka

2cr(ok) f Tk T %N
+ 3 \P[a( kaca) + b(ok)b (o)] P) (164a)

On expanding, equation (164a) becomes

2 ap

C'k rr i-co~a,(o~)P+ PT b()()

k j.S 1 5 jkka
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+w Prfjj + .PrjbJ I(64b)
I.%j

The condition that P,, be extremal then yields

CY(O~k) Pra. + P rjbj =0. (165)

LEMMA 1. If a real wk, e It- exists such that f(w~k) and g(ok) are not zero, and for any r

a-.

rI [ 1, ,

[ P~ijo) Sa(k) [=m rL0~ (166

., Pab,(wk) 0, for that value of r, (167)

" and vice versa.
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Proof. Let us say that we have a sequence of to's, col, o2,... Ok,..., oN, where for c,,

relation (166) is valid. Using relations (159) and (161) we have,

,r[a zsaT~cs b(tos)bT(tos)]

N T

P1S S j-22

so that p

s=1 Cy s=1 (Y

co -(CO
0 0

p- 0 2  (168)

NCO2 o 2((0) N a (CO)
. S 2 _ 0 1 - 2%1

s=1 s  =1 C s  I

where

a 2 (Os) = f2 (CO) + g 2 (COs). (169)

The determinant A of P 1 then becomes
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0 ..

A= 0 (A-2 0 /, 2 ) (170)3= sY =1 a I
3 S S

which by the Cauchy-Schwartz inequality is always > 0, as it should bsince P is a

covariance matrix. Thus the matrix P now becomes

AB 0 B2

P=0-- 2 0 /,(7a-B 2  0 BC]

where

N az2(co) N (02°2((e)

A2 B= Y (171b)
s=1 F s=1 07

-~S S

N 4 2

C c sa ( os)  (171c)2
s=I 0 s

A =B(AC - B2). (172)

Noting relation (157), condition (166) becomes

f(ck)[-w A + B] = 0, r=1

-g((o) [w(CA - B2)] = 0, r = 2, (173a)

f(zOk)[- x B+C]=0, r=3,
JO

S.k
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Relation (167) yields i.

g(O%) [-1)2 A + BI =0, r = 1,

I

f(oik) [a% (CA - 132)] = 0, rN ,(13)

-5.

1.

) [-2 B+C]=0, r= 3.,.

If g((17) and f(cok)  0 then two sets of equations become identical, and the result

P

follows. N 11

J.

LEMMA 2.

XP-- g(c[A+]O r1 %

froi io (C -aB.] 0, r 1, 2, (174b)

g [ .a. f(oOk ) ,rr=3

and•

ZP .3b.j f(O~k)
rj......P _ - aj 1 0, r =2. (175)

1P-

Proof. The proof follows from equations (173a) and (173b). E

THEOREM 1. For a given forcing function Q(€o) and any r r { 1,2,3)}, there may exist

frequencies cok such that the inclusion of data at those frequencies does not yield any

improvement in the variance Pr of our estimate of parameter r. Specifically, when Cke" In j

satisfies equation (166), co =wk is such a frequency.
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Proof. Let us imagine that the measurements at the frequencies ol 0 2,. .. ,O\k. have

been made and that with each measurement, the covariance matrix P is updated. After

making the k th measurement at (o =cok, the updated covariance matrix becomes [16]

1)+P--P-HTR + H P-HT PH P-, (176) p
k k k k

where,

P- denotes the covariance before the measurement atwk

P + denotes the covariance after the measurement at (k

Hk denotes [a,bJT evaluated at wk, and

R = 0 diag(1,I)

Relation (176) can be rewritten using the notation

L= P-HT (177)
k'

as

P+ P--L [Rk +HkP-HJlLT. (178)-.

Using relations (157) and (159), we have
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I Pjj 1Pi b

L= I Pbj P 2 i  (179)

IT j 3j a, 2;PJi
@S

If relation (166) is valid for some r, then -a

Pa. (c, ,) -- P b.(w) (180)

and by relation (179)

L.=0, j=1,2forthatr. (181)

Consequently, from equation (178) we find

P-+ =P-r J =1,2,3. (182)

We note in passing, using relations (180) and (182),

IPa. =1 Pb. =O. (183)

COROLLARY 1. For values of ok for which " Prja (Cok)= 0 (for r = 1,3), the

variance of the estimate of the r th variable as well as its covariance are unaffected by the

measurement ) = o.
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Proof. The result follows directly from relation (182). E

We note that the frequencies wk, which do not contain any further information (for

any given r), do not depend on the parameter values m, c and k. They are only governed

by the nature of the forcing function Q(w) and can be calculated before even the

measurements are made. They also do not depend on the measured responses.

COROLLARY 2a. If g(cok) * 0 and f(ck) * 0, there exists no Wkr Ia except

possibly wk = 0 for which

Y0 P2jaj(o)k) = 0- (184)

provided the covariance matrix is nonsingular.

Proof. Referring to equations (173) for r = 2 and noting that AC - B2 * 0 because the

determinant of the covariance matrix is nonzero, the equations can only be satisfied by %o\

=0.

COROLLARY 2b. If g(ok) * 0 and f(wk) * 0, there always exists an, ok ok c

(0, oc) for which XPrjaj(ok) = 0, r = 1, 3.

Proof. We shall show the case for r -- 1. Using relation (173a), o-- B/A. From

equation (172), B > 0 and A > 0. Thus cok = (B/A)1/2.

The proof for r = 3 follows along similar lines. U
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THEOREM 2. The optimal locations for the measurements t = o (tE I n, if they

exist at all, which minimize the variance in the estimates P,, satisfy the following relations:

r2
S g(Wk)  Y(Wk)

1; aIP(,r(N))- - ) 1+ -(P i)a = - 0, r= 1,3 (185a)
f(N))[ ~

when f(ok) 0. When f(o\) = 0, they satisfy the relation

P b (ok) - P bs(o k) = O, r =1,3, (185b)

Proof. Using equation (165) and Lemma 2, the result follows. A similar result can be

written for the cases when g(ok) * 0 and g(Dk) = 0 respectively.

Equations (185a) and (185b) express the criteria for finding observation points o\

such that the mass m or the stiffness k can be optimally identified. We note that the

optimal location (o\ of the kth observation point depends in general upon the location of all

the previous observation points as contained in Pr and P,,.

THEOREM 3. The optimal locations for the measurements co = o k. oxke I r, if they

exist at all, which minimize the variance of the damping parameter c, satisfy the relation
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-k) [g2(Cok) + f2(t'k)]  = - d [g2( ) + f2(.) 1 (186)

K or(ck) 2 do o,

Proof. Noting relation (165) and Lemma 2, the result follows. We assume that the

covariance matrix is strictly positive definite.

Theorem 3 states that to optimally locate the k th measurement, relation (186) needs to

be satisfied. We note that in this case the optimal location of the k th measurement does

not depend on the locations of the preceeding measurements and is purely controlled by the

nature of the graphs of f(w) and g(co).

Next let us consider the problem of minimizing the sum of the variances of 2 out of

the 3 parameters. Let si. i = 1..., A be these A parameters. Let A be the zero matrix

whose nth diagonal element is unity if n - si, i = 1..., 2, si r (1, 2, 3). We then have the

followng result.

THEOREM 4. The frequencies ,E In which make

P , ! <3, (187)
i=l I 1 i.

extremal are given by the relation
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aT(a) {Pa(o (k Pa() + bT(k)P Pb(Ck)= 0, (188)+.- )(~k)P Pa k) a(czk) 
k)

where A is the selection matrix as defined above. -

Proof. The extremal condition is given by

-f oaps.,.2;
0. (189)

1=1O

Using relation (164a) this becomes

S (P '.)a(k)P + Psbij)b(k)PSS }
( p \k) Ps~ Ji + =0 (190)

from which the results follows. 0

COROLLARY 3. The extremal values of trace(P) are given by the relation

TS

aT(cOk) P2 a(0k) + bT(ok) P2b(Co) = 0 (191) -
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when a = 0. This corresponds to R = a0 Diag(l,1, . I 1)

Proof. For this case A = I and the result follows. 0

COROLLARY 4. If either f(otlk) or g(ok) is nonzero, then there exists no cok, .k > 0,

for which the vectors P a(o)k) and P b(Cok) equal zero, provided P is nonsingular.

Proof. Noting that the vector Pa is proportional to

g(o)k)[B2 - AC] (192)
f(O )(C - Wo2B1I

where A, B and C are defined in relation (171-172), the result follows. The result for P b

is along the same lines.

COROLLARY 5. If 2 > 1, there exists no frequency O , Wke I, such that for f(ci)

and g(w k ) nonzero and P nonsingular

AP a =0. (193)

Proof. The result follows from Corollary 4 and relations (173).

We note therefore that, in general, the data at each frequency provide information on m
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II

and/or k.

4.4. Numerical example.

0o, t <0,
.- =

(194)-'-Let q(t) = Ot, >0 3>0 .

Then, f(w) =3 and g(c) = co. The vectors a and b become
'p

a- [- 2 3 2 ]T, 2

and (195)
b =[-W13 (Op3 CO1T. '..

Let us assume that measurements at co = col, )2 .... cokI have been made and the next

measurement is to be taken at cok. Let P- denote the covariance matrix at the end of the first

(k - 1) measurements, and (01 E [1, 0,). Let a (Oi) = 70,V i, so that a(co) 0.

If wk is such that P3jaj(ok) = 0, then no improvement in the variance of the stiffness

estimate can be expected by obtaining the additional measurement at CO = k. This

condition for the forcing function (194), after some algebra, implies
I

ok = [C'/ B']11 , (196)
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where

k-I k-I

C'= ('P + co')o and B= Xc 2(p2 +)2 (197)
s=1 s=1

For illustration, assume that k -4 and 13 1. If the first three measurements are

taken at co = 1 rad/sec., co = 2 rad/sec., co = 3 rad/ sec., and o= ay, j 1,2,3,4, then

[.00648 0 .04274"

P" 0 = 07 .0089 0 (198)

.04274 0 .3405 J

B' = 112, C' = 892, and relation (196) gives o)4 = 2.82 rad/sec. Thus a measurement at 0o

= 2.82 rad/sec. will yield no improvement of the covariance of the stiffness. In fact, from

Corollary 1 we know that P3,= P 3 ,j = 1,2,3. Again if o is such that 1P'jaj(o)) = 0,

then the new measurement will provide no additional information on the mass parameter.

After some algebra, we find that this relation gives

ok (B' A') 1'/2, (199)

where A'= + 2 , and B'is as defined before. We then have Pj = P,

j = 1,2,3. For the example taken, A' = 17, and the value of (0 satisfying (199) is 2.56

rad/sec.

For optimally locating the measurement 0w = 0 k so that P11 is minimized, equation
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(185a) needs to be satisfied. This yields

k k k

-2+ + osc (Cs ) 0=0, (200)
s=1 s=1 s=1

which simplifies to

4 2 2 2
2o + (k(4P + 3A') + 2A'p32 - B3 + 23 --0. (201)

For ,.4r= 1,-) in our example, relation (194) gives a value of 1.148 rads/sec.

4.5. Extensions to some nonlinear sdof-systems.

In this section we extend the results obtained dealing with the parameter identification of

a linear system to nonlinear systems that can be described by one degree of freedom. The

proofs of all the results follow suit from those of the previous section and therefore have

been omitted. Here we shall work directly in the time domain.

Consider a structure modelled by a nonlinear differential equation

m-x + f(x, "x) = q(t), x(0) = "x(O) = 0, (202)

where within a certain range'of response the nonlinear term can be approximated by
I'
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f(x,x) = [nmxr (t)i m(t). (203)
n,m

The system is assumed to be nonhysteretic. Let us say that the response of the system

is measured at times t = tt, k = 1,2,..., t r (0, T), and that the aim is to locate the instants

t = tk when measurements should be made so that the data collected thereat would yield the

minimal variance of any one of the parameters m or 3m whose accurate identificaiton is

required. We shall assume that x, X' and i and their derivatives are continuous functions

of time for t e (0, 7).

If the complete time histories x, x and x were available (actually they are not), then

equation (202) could be rewritten as

mzl(t) + CIZ 2(t) + cIz 3(t) + + CLZL +1(t) = q(t), (204)

where the z's correspond to the corresponding time functions. L = m x n and the

coefficients Omn are assembled into a one-dimensional array c. Identification of the

parameter vector 0 = [m cTIT under noisy measurement conditions would lead to the

relations

q = HO +e, (205)

where
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'.+

q = [q(t1) q(t2) q(tN)IT,

H = [z(tl)z(t 2)...Z(tL+l)] T , z(t) = [Z1(t) z2 (t) ... zLt+l(t)IT,

e = the zero-mean white measurement noise. (206)

The covariance of the estimate can be written, as before, as the (1 + ran) x (1 + mn) matrix

P = (HTR1H)t , (207)

where R is the noise covariance matrix and is taken to be diag (or , o .... 2). Once again

the extremal condition for P with respect to a measurement instant tk can be expressed, as

before, by the relation

Li Prjtjzj =0. (208)S 0(t,) J ..

'd.

U,

where Zj is the j th element of z. (We note that this result follows directly from equation

(165) if we set b to 0, a to z, and (0 to tk.) We then have the following result.

p.

Theorem 5. For a given forcing function and any r e { 1,2,..., mn + 1), there may exist

times tk such that the inclusion of data at those times does not yield any improvement in the

variance Prr of our estimate of the r th parameter. Specifically, when for some tk r (0,T)
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mn=l 29
I P z(tk) = 0 (209)
j=1

is satisfied, then t = tk is such an instant.

Proof. The proof follows along the lines of Theorem 1. U

Corollary 6. For values of tk for which P jz (tk ) = 0, the variance of the estimate

of the r th variable as well as its cross-covariance is unaffected by the measruement at t

tk "

Proof. As before, the condition implies that

P + = P, = 1,2,...fm + 1. (210)

The proof follows, as did that of Corollary 1, from the proof of Theorem 5. 0

Theorem 6. The optimal measurement times tk, tk E (0, T), if they exist all, which

minimize the variance Prr satisfy the following relation

nn+l a mn+1
uis(tk) = i z .z. (211 ),

S=1 OF(tk) j=l I'
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Proof. The proof follows along the lines of Theorem 2

THEOREM 7. The measurement times tk e (0, T) which cause

Ps , t<gmn+l, (212)
a.i=1 I J

S.q

to be extremal are given by the relation
'pi

T CF(tk) T
O(y)PAPz() = - ( z )PAPz(t k)  (213)

o;(t k)

when A is the zero matrix whose n th diagonal element is I if n =s i, i =1.... 2, si E

(I n ... n+ 1).

Proof. The proof is exactly along the lines of Theorem 4. S

Theorem 8. If z (tk) is such that for a given set si, i = 12,..., 1; t < mn + 1,

APz(tk)= 0 (214)

131



.' rean ufecd. In fat.

then there exist time tk E (O,T) such that 'I remains unaffected. In fact. Pr .
I 1I ,

r = 1, 2.- mn + 1, i = 1,2,..., 2 remain unchanged by the new measurement at time t.
kp

Proof. The proof follows along the same lines at that of Theorem 1. E

4.6. Remarks and Conclusions.

In this section we have tried to understand the optimal measurement strategy for

identifying the parameters of a single-degree-of-freedom dynamic system.

For a linear system, we have shown that, in general. data acquired at all frequencies, in

the interval wk E In, do not equally enhance our knowledge of the parameters being

estimated. Specifically, one can often, given a data stream collected at frequencies W1 , =

1,2,..., k - 1, forecast the next frequency at which data collection would be maximally

beneficial to obtaining a more confident estimate of any one of the desired parameters.

Likewise, one can predict the frequency at which data collection would have no influence

on improving the .ncertainty in our estimate of any desired parameter. It is shown that for

{) E In/ f(w), g(co) 0), data at all the frequencies carry information about the damping

parameter c. Also as opposed to the optimal measurement location (ok for identification of

m and k, which do depend on the previous measurement locations co, W2 ,-" Ok-l, the

optimal locations for the identification of c do not depend on the locations of the

measurement stream. They are solely controlled by the nature of the forcing functions

used in the identification procedure.
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Irrespective of which parameter is being identified, the optimal measurement locations

do not depend on the values of the parameters. It is noted that the solution of equations

(185) and (186) may not exist for any w belonging to the open interval I0. For such I

situations the optimal locations would have to be chosen as the end point(s) of the interval.

Also, it is observed that the optimal measurement locations do not depend on the system

output x(t). Thus the optimal locations can be calculated a priori to obtaining the

measurement stream. A numerical example has been included to illustrate the analytical

results obtained. Furthermore, analytical results relating to minimization of one or some ,

sum of the variances of the estimates are also provided.

The results are extended to nonhysteretic nonlinear oscillators when time data of

displacement, velocity and acceleration can be obtained for a given time-dependent forcing p

function. It is shown that there may exist certain times t,, at which measurements provide

no additional information regarding any one of the parameters desired to be most accurately

estimated. Similarly there exist times tk at which measurements provide maximal

information about a desired parameter. The relations that these times tk satisfy in each of

the two cases have been analytically deduced.

p-

The results of this section, it is hoped, will shed light on the manner in which

experimentation can be performed so that the amount of data handling and reduction

required could perhaps be significantly decreased in the dynamic testing of structural and

mechanical systems.

1'
,
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SECTION 5. TRADEOFFS BETWEEN IDENTIFICATION AND CONTROL

IN DYNAMIC SYSTEMS

5.1. INTRODUCTION

The control of large flexible structures is an area that has attracted considerable interest in

recent years from both the professional and the research community [71, 121-241. This interest is

primarily motivated by the need to precisely control flexible structures in various developing fields

of modem technology. In the area of earthquake engineering the reduction of structural response

may be necessary to reduce internal stresses caused by dynamic loads thereby reducing the damage

potential and increasing the useful life of the structure 125). in space applications the availability of

Space Shuttle to transport large payloads into orbit at reasonable costs presents an opportunity for

large systems to perform new missions in space. However, because of launch weight and volume

constraints these structures are generally very flexible and pose new challenges in all aspects of

control such as attitude control and maneuvering, precision pointing, vibration attenuation and

structural and shape control [7].

A necessary prelude to the effective control of a structure, is a knowledge of its

characteristics and properties. In other words, one needs to have information about the structural

system so that adequate control algorithms can be devised. This has led to a considerable interest in

the identification of structures subjected to dynamic loads[8-10]. For structural systems that are

described by parametric models, this involves knowledge of the nature of the governing differential
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equations and knowledge of the values of the parameters that are involved, or at least knowledge of b

the bounds within which the parameters lie. Clearly, the better the system is identified (the smaller

the bounding intervals within which the parameters are known to lie), the more finely tuned the

controller can be made, so that for a given amount of available control energy, the control would be

more efficient. The less knowledge we have about the structural system the more robust the

controller needs to be, and, in general, the less efficient the control. Thus heuristically speaking

there exists a duality between the concepts of identification and control, because 1) robust

controllers may require reduced efforts at identification (for purposes of control), and, 2) increased

efforts at identification may require less robust and more efficient controllers. However the

tradeoffs between identification and control, from a practical standpoint, are still usually difficult to p

assess quantitatively. Little work has been reported to date in this area of quantitative cost-benefit

analysis between these two dual concepts.

In this section we formulate the trade-off problem between identification and control, and

study in a quantitative manner their duality through the use of the intermediary concept of an

optimal input. Thus the section attempts to answer the following question: given that the optimal ,

input time function is to have a certain prescribed energy, how does it change in character and in its

effectiveness as one changes the objective criterion from one that emphasizes control to one that

emphasizes identification? While the analytical work presented here has been motivated by our need

to control flexible structural systems the methodology developed and the results obtained are %.4.

applicable to all systems governed by ordinary differential equations; thus it applies to systems %.'

commonly met with in chemical, civil, electrical, and mechanical engineering. Some simple

numerical examples are provided to indicate the quantitative nature of the results and provide a feel

for them. The results in these examples show that significant trade-offs exist between identification
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and control and that for the same amount of energy in the input signal, the emphasis on control

could lead to very high covariances of the parameter estimates. Similarly inputs that are optimal for

identification could yield responses whose mean squared values may be several times those

obtained for inputs that yield optimal control.

-,

5.2. PROBLEM FORMULATION

Consider a dynamic system modelled by the first order set of differential equations

x(t)= Ftx +G t f (215) a

z(t) = Hi x(t) + v(t) (216)

where x is an nX I state vector, f is an eX 1 control vector, z is an rX 1 measurement vector and the

nX1 initial condition vector, x0, is given. We shall assume that the measurement noise is

representable as a zero mean Gaussian White Noise process so that

E[ v(t) 0 = , and, (217)

E[ v(t) v(t) I = R1 6 ( t - 'r). (218)

Let the vector of unknown parameters in the system modelled by equations (215) and (216) be

given by the pXl vector 0. Let us assume that the identification is carried out with an efficient

unbiased estimator so that the covariance of the estimate of 0 namely, 0 is provided by the inverse

of the Fisher Information Matrix[ 13]. Hence,

Cov[ 0]= M'. (219)
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The matrices F1 and G1 are taken to be functions of, in general, the parameter vector e. The

optimal input for identification of the parameter vector 0 is then sought such that a suitable norm

related to the matrix M is maximized or minimized. Different measures of performance related to M

have been used in the literature [19]:

1. A - Optimality, where Tr( M-1) is minimized;
2. D - Optimality, where the determinant of W is minimized; and,

3. E - Optimality, where the maximum eigenvalue of M-1 is minimized.

In this section, for expository purposes, we shall use the criterion for obtaining the optimal inputs

for identification as the maximization of the Trace(W 1 2 M WI /2 ) where W is a suitable positive

definite weighting matrix. Thus the criterion for obtaining the optimal input for parameter

identification is taken to be

T

11 = Trace ({p1T H1 R-' HI 4p dt (220)

0

where

.Pp = w1/, (221)

and the matrix X p is given by,

Cx.
[X

J

In addition to the objective function generated by our need for identification, the objective function

required to be maximized for control is,
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T

J = - f XT Qx} dt. (223)

0

Here Q1 is a symmetric positive definite, nXn weighting matrix. This then yields the composite
-I.,

objective function which is required to be maximized as

T T

J = -(az/2) {xT Qx) dt + (P/2) JTrace R , HTR 1 H 4t }, (224)
0 0

where a nd 13 are positive scalars. Clearly, when a >> 13, finding f(t) to maximize J is tantamount

to finding the optimal control for the system (215)-(216), while when 13 >> , the f(t) that

maximizes J is simply the optimal input for identification of the pX 1 parameter vector 0. In

particular, when a = 0, and 13 =1, the optimal input for 'best' identification is obtained; when a =

1, and 13 =0, the optimal input for 'best' control is obtained. Denoting the nX 1 vector

ax
x - (225)

and assuming that the matrix W is diagonal, so that,

W = Diag(w1 , w2 . . . . . .. w) (226)

we can generate an augmented n(p + 1) vector,
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x(t)
1/2 "-A-"WI UA~L)/ao N1 1

0 -

1/2
y(t) = w2 ax(t)/a02  wih y(0) = 0 (227) ",

1/20
w 12 p  x(t)/I p0 -O..

which is then governed by the differential equation

T Ty= F y + G f, yT(0)={ x 0) (228) ".0A

where F is the n(p + 1) X n(p + 1) matrix given by

• ,.

F] . . . .

1/2w F F I ..

F= w-°F F (229)

2

w F F1p o
p

PI

and,

1'3
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G 1

W1 GO

1/2
G= w 2 G ,(230)

1/2

w G

with

F - , G i 1,2 . . (231)

et a3 0. e0 ci 0.

We note in passing that the stability of the equation set (228) is controlled by the stability of the

equation set (215) since the eigenvalues of the matrix F are identical to those of the matrix F1, as

seen in equation (229), except for the increased multiplicities. The objective function (224) can now

be rewritten, after some algebra, as

T T

J -(a/2) YT yQ yT dt + (P]/2)_ fyTH1T R-IH ydt (232)

0 0

where, the matrices Q, H, and R- are the block diagonal matrices given by

Q= Diag{ Q1, 0,0,. .... O ,}

H = Diag{O, H P, H , H , . ...H I}, and, (233)

'I
2

R4  Diag{ R::, RI: R::, . R:}

Thus the objective function needs to be maximized under the constraint equations (228) and the
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energy constraint

T 
'I

f'f dt = E, (234)

0 -

where the parameter E is givena p ip .

0"

5.3. Determination of Optimal Inputs for Simultaneous Identification and Control

Having formulated the problem for constrained maximization, we next use the standard ,'

Lagrange multiplier method to obtain the function f(t) which maximizes the objective (232) subject

to (228) and (234). Using the Lagrange multipliers X(t) and v(t) we therefore obtain the augmented

objective function to be

T T T p
Q{T y) dt + f HTRHydt + XT(t){Fy+Gf-)-dt+ y d+

0 0 0 ",

f -Lt (fTf- yN1l) dt (235a)

0

Here we augmented the state vector by the variable

Il,
t~ %.

%00

yN+f(t) = J fT(,) f(t) dt (235b) -

DI

where N = n(p+l) and we use the additional Lagrange multiplier 71(t). By doing this we can satisfy

the equality constraint (234) without having to resort to the usual trial and error procedure.
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Taking the first variation, we obtain the following set of equations for the variables y(t), X(t)

and 71(t) (see Appendix C):

1y(t)-Fy = -VX4t) , yC0)= Y0

X(t) + F ?.(t) = -ct{Qly + 3 {H R-' H )y, X(T)= 0, (236)

N+1 fTf =- (t)V ?(t), YN+1(0) = 0' YN+l(T) = E

Tj(t) =0

where V = (GGT). We note that the equation set (236) constitutes a nonlinear two point boundary

value problem containing 2[np + n+ 1] first-order differential equations. The optimal input vector,

f(t), is obtained through the solution of this two point boundary value problem using the relation:

f(t) I 1 GT X.(t) (237)

It is interesting to note that had we used the objective function

T

J = [ f x T Q x dt] -1 (238)
Co

0

instead of Jc in equation (223) we would obtain,

j2 SL j' +  J (239)
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where J1 is given in equation (220), and the relative weightings of the contributions of the control

and the identification objectives are denoted by a and P'. Following the same procedure as before

and using the augmented vector y, maximization of this objective function, JF, along with the
constraints (228) and (234) would then yield the folowing set of equations:

y(t) F Fy(t) =-.V X(t) ,y(O)=yo

~(t) + FT X(t) =-x{IQ) y + (1'A){IHT R- H Jy , T) = 0, (240)

-x+ j (t) VX(t), =N10 0, YN+1(T)E

-2V

where, A is the positive quantity defined by

T T

[JfyTQ ydt]2 [fIA TQ x dUL1 (241)

0 0

The optimal input is obtained from the relation

1T
f -t G X(t). (242)

'T1

Comparing equations (236) and (240) we observe that the only difference that arises in the use of

the objective function (239) instead of (232) is the effective change in weighting parameter13

Setting
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]3'A --0 the equation set (240) becomes identical with the set (236). The lagrange multipliers k.(t)

of (236) and .of (240) are related by X k; similarly, = A. It should be noted that the two

equations become identical only when the function y(t) in (241) corresponds to the response for the

optimal input f(t), i.e., the solution, y, of the set (236). With this rescaling of the parameter 03', the
optimal input f(t) is identical for the two objective functions J and Y' of (224) and (238). Having
thus shown the quasi-equivalence of the two objective functions (224) and (239) through this
rescaling, in this sequel, we shall illustrate our results by using the objective function in the form of
equation (224) which leads to the boundary problem described in equation (236).

This two-point boundary value problem can be numerically solved in various ways. An
extensive literature on numerical techniques for solving such problems is available[26]. Among the
methods most commonly used are multiple shooting techniques[26] with Newton-Raphson
iterations, and the Kalaba Method[27] where the two point boundary value problem is converted to

an equivalent Cauchy initial value problem. In this sequel, the equation set (236) is solved using the

multiple shooting technique with Newton iteration.

%

.5.4. Illustrative Example

.1*

'i

To exemplify the concepts developed, let us consider a system modelled by a single

degree-of- freedom oscillator described by the differential equations

op tm input f(t); xl()=has, X2(0) yobt (243)

where f(t) is the optimal input to be applied. Denoting x af[x n 2 of (2 and 3) Having

the objective function is taken to be
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J(T) = -a J(T) + b Jk(T) + d Jd(T) (244)

where,

T

JUT)= x 2 dt , (245)

C f
0

* T

J( )m = f 2 dt , (246)
0

and,

T
r 2

i d jXd 2 t(247)
0

The weighting factors a, b, and d are taken to be non-negative. This may be thought of as being

produced by choosing C = a, 1 1, W= Diag (b, d ), Q1 = Diag(l, 0) and H1 = [1 01 and the

scalar RI = a2 = 1 in our general formulation of equations (224) - (232). The six component

vector y is then given by

x

y = X , (248)

and the matrix F becomes I
148
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0 1 0 0 CO 0

-k -c 0 0 0 0

0 0 0 1 0 0

F= .b1/2 0 -k -c 0 0 (249)

0 0 0 0 0 1

0 -d'/ 2  0 0 -k -c

Since the vector G = [10 0 0 0], the vector VJ 1) has only one non-zero component namely,

2(t)/Tlwhere X2(t) is the second element of the vector X(t ). Figure 22 shows some of the

numerical results for the following parameters values (which we shall assume are taken in

consistent units):

b--0, T= 5, E = 2.25; and, (250)

k= 50, c=2, xY(0) = 0, x2(0) = 10. (251)

These parameters thus look at a single degree-of-freedom oscillator whose spring constant is 50

units, and whose viscous damping is 2 units. This yields a system which has an undamped natural

frequency of vibration of about 7 radians/sec and a percentage of critical damping of about 15%. It

is subjected to an initial velocity of 10 units. The aim is to study the trade-off between 1)

identifying (in equation (243)) the damping parameter, c, in the best possible way, and 2)

controlling the system so that its mean square response over the time period T is a minimum, given

that an ;Aput (forcing function) of 5 units duration with an energy of up to 2.25 units is to be used.

The ,wo point boundary value problem posed in equation set (236) is numerically solved using the

standard multiple shooting technique[ 15]. The local error tolerence during integration of the

differential equations and the permitted error in the satisfaction of the boundary conditions are each

set to 10-4. The responses of the system together with the optimal inputs as obtained from equation

(237) are shown for the two extreme cases: 1) a=O, d=1, corresponding to the optimal input
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requireu for identification of the damping parameter c, and, 2) a=l, d=O, corresponding to the
optimal input required for minimizing the response. As seen from Figure 22(B), the optimal inputs
required for 'best' identification and for 'best' control (the term 'best' is used in in terms of the cost
function (244) utilized) are widely different form each other. In fact they are seen to be, for the
entire duration over which they last, almost exactly out of phase. Differences in the response of the
system to combined influence of the initial velocity and the forcing functions obtained for the two
cases are shown in Figure 22(A). Figure 22(C) shows the Fisher Information Matrices for

damping, which in this case are scalars, namely Jd(t), for the abovementioned two extreme cases,

as a function of time, t. The difference between these at T= 5 is about 55%. Alternatively put, the
input forcing function, which controls the system response maximally, causes a response which is
only about 55% as informative about the system parameter c as that caused by a forcing function
that is designed to maximally provide information about the parameter, c. The manner in which the

integral of the response quantity squared, J,(t), changes with time for the two cases mentioned

above is shown in Figure 22(D). As seen, at T = 5, the optimal control input is about 35% more
effective in reducing the mean square response than the input which optimally determines the
parameter c. Figure 22(E) provides the sensitivity of the response to the damping parameter (at
c=2) as a function of time.

Figure 23(A) shows the manner in which the Fisher Information matrices Jd(T) and Jk(T)

change for various values of the ratio, y = [ {a J(T)I/(d Jd(T)l I when the fisher values are

normalized to unity. It is to be noted that the optimal input when a=0 corresponds to the that

required for 'best' estimation of the parameter c in equation (243). Figure 23(B) shows the effect of
changing the available control energy, E, from a value of 2.25 to 30 keeping all other parameters
the same. From a loss of information in the parameter c of 55% in the case of E=2.25, the loss in
information when E = 30 jumps to about 450%. Similarly, the extent to which the system's
performance can be controlled deteriorates by about a factor of 3 if one aims at purely identification

instead of control. The parameter T1 which is calculated for each objective function ratio, y, is

shown in Figure 24. As mentioned in the formulation, this quantity is simultaneously solved for, in
the set (236), thereby eliminating the need to find its value by trial and error. Had this not been
done a very high computational expense would have been incurred to ensure that the energy
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constraint is satisfied. Noting that the inverse of Jd(T), for an efficient unbiased estimator, is the

covariance of the estimate of the parameter c, Figures 25(A) and 25(B) provide the trade off

between control and identification. As seen in Figure 25(A), in going from y = 0 to y = 4, JC(T), the

mean square response, falls off by about 35%; similarly the covariance of the estimate of c

increases by about 55% as y varies over the same interval. For larger values of the input energy,

Figure 25(B) shows that significant reductions in J, and significant increases in the covariance of

the parameter estimates can occur.

5.5. Conclusions

In this section we have presented an approach to quantifying the tradeoff between the tasks
of control low development and plant identification. To the best of our knowledge this tradeoff has

never been analyzed quantitatively before. The problem is formulated in the context of optimal

control and optimal identification through the intermediary concept of an optimal input. A suitable
objective function is chosen so that the emphasis from control to identification can be changed in a

continuous manner. It is shown that the duality between identification and control can be quantified

by determining optimal inputs, which have a specified amount of energy, and which minimize the
objective function. Augmenting the state by an additional variable allows a simultaneous solution

of the optimization problem together with the energy constraint. Using variational calculus this

leads to a two point boundary value problem that is nonlinear due to the introduction of the energy

constraint. The boundary value problem is solved numerically using the multiple shooting
technique and Newton-Raphson iterations.

A numerical example, which deals with control and identification of the parameters of a

single degree-of-freedom oscillator, is used to illustrate the concepts involved. It ,s shown that
improved control leads to serious deterioration in the covariance of the parameter estimation and

vice-versa. In general, as the energy of the input increases the tradeoffs between identification and

control are shown to become more and more intense.

The above example shows the potential of the approach introduced in this section. The
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numerical computations can be easily generalized to vibratory systems with many degrees of
freedom, making the method presented here useful in studies of large flexible structures. -
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APPENDIX A

If in the equation (101) f(t) = 8 (t), the expressions for Q, (T) and Q2 (T) when estimating A

(a =0) may be written as:
Q, (T) = p 2a 1 + q2 bi + p a2 + q2 b2 + 2pqlc1 + 2pp 2d +Pq 2g

+p2q h+2qlq 2 t +2P2q2c2  (A. 1)

and

Q2(T) = p'1 2a,+q' 2b1 +pP. 2 
2a,2-+q' 2 

2b2+2p', q ', c +2p',p'2 d

+p'I 2q 2
2g+P'2 q'I h+2q' q'2 t+2p'2 q'2 C2

(A.2)

where

Sin€

T Sin(2coiT)

a , (A.3)

a 3 -r 4 "T

b + Sin(2.oiT) + - Cos(2oiT), (A.4)S 6 4(,)i  8l4(a 2

Sin(2o i T) TCos(2oiT)
C. = , and i E 1,21 (A.5)

W 02 4a)i

also

A - [(A+B+I) + (A + B + 1)2 -4AB (A.6)
1.2 1.2 2Am

Al- 1



Let us define

'ON -- (" 2 (A.7)

and

o'p (- o1 0'2 (A.8)

Hence

d Sin (oT) Sin (oPT) (A.9)

Sin(co T) TCos((o T) Sin(o '") TCos(co T)
N p p
2 -+ - , (A. 10)wo Co 02 co
N N p p

Sin (Na)T) TCos (oNT) Sin (c)T) TCos (coPT) (.1h =-+ + 2(A. 11) '

and

T Cos(o T) 1 
2  T Cos(COT)

2= 2 " Sin(copT) + 2III 2t 2 op Cp 'ON

+ 3 " Sin(NT) (A. 12)

2 NN

A2
CS . * ~ 5'



Let us further define

D =k(k-X Xm), (A.13)

E= k/(k- 2m), and (A.14)

ROOT [ (A+B+1) 2-4ABI1/ (A. 15)

Therefore,

-1 +___ D A 3o2 ~D) [A - B+1 + ROOT]+ o -4A,-- to c (A+D 22  Jmco(A+D2)2 A

E A-B+ B+I -ROOT 1
AmROT Ae)2 A-R'-- + -I OO A . k2Am~o,(A4Am co

A-B+I_ B+I B+OOT 1 161ROT A+D 2 A+E 2  .

q, 4Am2cwd ROOT A[A+D 2 A+E 2  (A. 17)

2 2
-1 D D D2(A-D 2) A-B+I -

P2 { 0 (A+D)2 (A+E2)2 2Amo2(A+) ROO

B+I + ROOT E2(A-E 2)  A-B+I B+ -ROOT + k
A 2A:o2 (A+E 2)2 ROOT 4AT2] 3

A3
". '. " "" -%- -- .", ",-'-;." "" "', " " -". -,-'" "--. "" "" "" "':" - -"" ". "-",-.- - ," ."".,"--,, .-.'", "?,-'.-'." -i"-",",-",-. ., " *'



A-B+1 B+1-ROOT' D E
____ ii J(A. 18)

RO OT + A A+ 2 A

k A-B+1 B+1-ROOT D E

q4Am 2 co 2 [ JI i +AEJ (A.192)

2 2) r ;__

= .L D E DI D(A-D 2 A-B+1 B+1 + ROOT]
P1  MO) [A+D5 (A-4E 2) 2Amai 1(A+D2)2 ROT

E (A-6 AB+1 B+ -ROOT k

2Aco(E2 21 ROOT A I4Am 2 ()3

A-Be- B+1 +ROOTi D E 1(.0
A i+D A+E~j

(k [A-B+1 B+1+ROOT[ D E
q, 4~2 ~2 K()OT - A 2 2(A.21)

2 E2  3-+

2 ={m(0 2 [ (A+D 2 ) (A+E2)2 +Mcj 2(A+D) 2 [O

A4



B+I +ROOT E 3  A-B+1 B+1 - ROOT k

A m0 2 (A+E) 2 [ROOT +  A + 4Am 2 3

A-B+1 B+ -ROOT D2 E2

- + - + I (A.22)ROOT AA+D 2  A+E 2

and

-k IA-B+l B+1 -ROOT][D) E
q2 

=
' 2 2 ROOT + A A+D2 + (A.23)4Am (02+2 A+E 2

Substituing equations (A.3 - A.23) into equations (A. 1) and (A.2) yields the exact form of Q,(T)

and Q2(T) for the solution of the OSLP for determining the parameter A.

Similarly if one seeks the solution of the OSLP for determining the parameter B (under the

same impulsive base input) for the system governed by equation (101) and (ac = 0), one may write,

after some algebraic manipulations:

Q1 (T) = u2 a+ v2 b1+u2 a2+v2 b2+2u v c +2u u2d+u u2g

+u2 vlh+2v v2 2+2u 2v2c2, (A.24)

and

ua+v'2blu b2v b+2ut'vlcl+2Ui u~dQ2Mr =l I 1c 1122u2
+ uju' 2g+ u~v'h+2 vi v 2+2 u vic2  (A.25)

where ai, bi, and ci (i E [1, 2]) are given by equations (A.3 - A.6); and d, g, h and 2 are given by

equations (A.9 - A. 12). Also

A5
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B-A-S

k + A+E 1 I 1 ~BA+
Am (A+D2 ) - 4A W)(

2D E OT

k 1AE 1 B-A+1
U 2 2
24Amo, A4-D A+E AL ROOT' (.27

k _ _ _ + r B-A-~l
v 2= 2 Z A22 A+DT A+E.R9)

k2Am co2 (ADOT

k (AD E IrB-A+
22 +D A+E2Il 2A9 +

1= m4AmAo3I IA+D2 )1 ROOTJ

A6



* I

E 3 - D D E B2- A+1"v2 2 1AD2  OO (A.31)
4Am 22 A AO+RO

2 mw 2 (A+E 2)2  
2'

+ 2 1 +(A .32)m 2)(A+D 2 )
O ,+ -+l

and

V,2 k 2 2' D- 2 2 -A1 (A.33)4Am o 42 A+D Am AR

, 4

Substituting equations (A.26 - A.33) into equations (A.24) and (A-25) yields the exact solution of

Q, (T) and Q2(T) for determining the parameter B.
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APPENDIX B

a) Herein we present the closed form solutions for Q1 and Q2 associated with the identification

of (1) parameter A, (2) parameter B and (3) parameter a from response data obtained using a

sinusoidal base motion.

The solution to equation (101) when f(t) = c0Sin(wt) (a _ 0) can be shown as

H IHSin(cot) + 11 Cos(on)

WO)~ = (B. 1)
H-Sin(cot) + I2Cos(ot)

where

HL I + 2 (B.2)

m(A+2) im(A+2)
.

H 2 DL 1  + EL2  (B.3)

m (A + 2) m(A+2

J1 J2
S1= m  +  + 2 (B.4)

M(+D jm ( )

DJ1  Ej2
+ (B.5)

BI



and

22 200)2

.-. IxI- )o) -J

sxic-) S+a~ I-

L = I' - (B.7)(12 -02)2 + a 2 2X 2  {{( j 2 2  (0%)2(-2
_______ [~) 2  2 _02

22=  (B.)

2 

B

"~~~~~ ~~ (02- a2) +02y2,

0" 4

0 0

S2

S5

2( (B.8)

(0) )L )2 + 2 )2 )X2  { ( 2 . 2+

and

2

-ao 2 - c (B.9)
2

2 22

{[H2 ]o 2 + (m0 )2)

B2 :



p

with I

_ o , (B.10)
0

0o°  rk/m (B.II1) ."

-0 k2

- [(A+B+I) ± J(A+B+1)2-4AB] (B.12)
1,2 1,2 2Am

-mC0 (A+D)
R= (B.13)

jm(A+D2)  .

.mCo(A+E) .
S -(B. 14)

jm(A+E2) ..

k%

D = k ,and (B. 15) " .

k - X m -

E = (B. 16)
k - krn

(1) If the OS L for the "best" estimation of parameter A is sought (using the approximation

= ) ;i = 1,21), Q,(T) may be written as,
aA aA

1~WI

B3



F W.W 
.VA .V 

J

VN

(2 T I 1
QI'(l) = + 2'22,Cos (cot + 20)Smin)I) (B. 17)

where,

*tan t  (B. 18)

The quantities 41 and 42 in the above equations can be expressed as:

f C01(D- 2) C0 2 E- E 2) C0
2

1 A- 2AD - D2)

R(A+D) 2  S(A+E 2)2  2RA 2(A+D2)2

[ AA-B1)] C0E2L2(A - 2AE - E2)

1B+1+ROOT ROOT ]+ 2SA 2(A+E 2

A(~B1) +C 0 F~k(A+D) rOOT-+1[B+1-ROOT + _________ +(-+1 (B+1)
ROO 2A 2m(A+D2 ROT

- POT +C 0 F2k(A+E) r -A(A-B+ 1) +(.9

2A m(A+E2 L ROOT ROT

and

-2 { C(D 2  S(A+E 2)2  2RA 2(A+D2

B4



A(A-B+l) COE J2 (A - 2AE - E') ;"

B+l+ROOT ROOT + 2 22 [B+l-ROOT +

A(A-B+1) C,(A+D)G~k r A(A-B+1)
+ (B - OO

ROOT 2~nA1) ROOT (++OT

C0(A+E)G 2k r -A(A-B+1)
+-(B+1) + ROT(B.20)

2A 2m(A+E2) L ROO

where

2

4 F 2
{f~2 2( ()2{

i2 2

2 2

00

.2,

G.=1
2S

.2-a

.,3 O . % (f~ iP Sd~fj' %PS~*a.J -#



0 0/ 0~o (B.22)
V.2

LVoo 2 ()2]

fori , [1, 2].

and

ROOT = +B+ 1 4AB

Similarly,

""(T) '2 2) T - 1 Cos (cot + 20') Sin(cot)] (B.23)Q2 )  1 +2) 2co

where

0, tan 2

= CO(D2.-ID3)L C(2 E)2 +(A2 22".

+ C(E 2 E3)L2  CD 2
1-(A - AD 2 + 2AD)

(A+D) S(A+E2)2 2RA 2(A+D2)2
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_________ C0E2L2AD) (A 2 b[ AA~+1) + BA +2A) - ROOT

ROOT 2 ROOT]
ROOTJ 2A m(A+D 2  ROTI

C0EkF2(A+E) r -A(A-B+1)
2ROOTROT

2A2 
-nAE LB1 (.4

and

C0 (D - D + - E-)p 2 + CJLIF &( AD + rIJJ)

21 2 2)2R(A+D) S(A-.E 2) 2RA (A+D)

22 2
A(A-BI1) JE(A -AE + 2AE)

B+-I ROOT - ROT + 02l 2 2 [B4ROOT +

ROOT +2 (+ 2) ROOT (B+1) - RO

+ r0 k 2 AE -(-+1 (B+ 1)+ ROT(B.25)2A2  2) ROOTROT

(2) If the OSL for the "best" estimation of parameter B is sought, Q1(T may be written as

B7



Q, (T) =(VI V [ Cos (t 2) Sin(r)] (.6
2 2 20)

where

-1 2
W ,=tan __ 

(B.27)

COID(D+ 2AD-A) C0)Flk(A+D) B-A+1
=~ +2+2m(+ 2  ROOT

S2RA(A+D ) -A+

CL E 2(E+2AE-A) Cii(AE02 C0 ~(+) B-A+1+ [ 2 + 2[~O~i(.

i2SA(A+E2)2 2Arn(A+E OT(.8

and

iC0,JD 2(D2 + 2AD-A) C,,kW,(A+D) B-A+1 1
22 +An(+D) 1+-

22AR(A+D 2) 2 ArAD2 ROOT~

+ COJ2E2 (E 2+2AE-A) Cokw (A+E) ir A~

L2SA(A+E 2)2 2AROOT2 (B.29)]

Similarly

2T) (v 1 2+ v 2 [ Cos (cot + 2Nt) Sin(cot)] (B,30)

where

IdI



- -- -
- -2 .

tran (B.31) A
V

-C L D 2(As 2 2AD 2 + 2AD) C.F~kD(A+D) B-+1S
1 = {[ 2RA(A+D 2)2  +2Am(A+D 2 JL ROOT~]

[-coL 2E2(A' - 2AE2 + 2AE) COF 2kE(A+E) iF B-A+1
I 22 + 2 (B.32)-...I 2SA(A+E2)2 2Am(A-eE) 2L ROT

and

-C0 JID 2(A 2 - 2AD2 + 2A.D) CWDk(A+D) B.+

V2 = 2AR(A+D2) 2Am(A+D ROT

[-C JE (A2 - 2AE2 + 2AE) C W Ek(A+E) BA

2SA(A+E 2  2Arn(A+E2 ) ROOT

Also in equation (B.28) and (B.32)

.21 4 2 2

W. (B.34)

{(2 2

0)0 2 -YI + (cL%)y Y
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i [1, 2].

(3) A similar type of solution can be provided for QI(T) and Q2(T), when OSL for "best"

estimate of a is desired. Therefore one may write

Q (T) =(g2 + v ) . .. Cos((ot+223)Sin(o)t)] (B.35)2 2 2co 
.

and

2F
3-

Q2(T) (2 + 2) [ T -1 Cos (cot + 2') Sin(t)] (B.36)2 2(o

where

tan (B.37)

-1 2-

1tan (B.38)

91 2
.2.

pp.

4
OLI

P.-

2 2 2 (A+D.
CO(D) -7 + ,0 Y 1.

Pp.

J00 .6. -- .,*

~ ~ %. .P * . p ...



2C0 (AeE) [(\ 2L2 2 -

+2 (B.39)
12

3[2 4c%22)

f2o 21 2+' (A+E 2)

2

CO(A+D( Coo

g2 2 2

{k) 12] (nm 0

(WOO, - + LOd ()0

2C0(A+D)(aci) 7

(PVOH(A+D) 2 2

2

Coy(A+E) (:
+ 2

'AS

BIl



6

2C(A~cu)20 (B.40)

... 2

.3 2

CO(A+D) 12 (

.22

22
2 41

3 0
coo(A+E) 2y2+(w 2 72 02

(00 (00~

and
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.24

22

3 (ADY(A2D(2. 2 )

2] + (awj3) W~

6

2 C0 Dy(A+D)(cO 0 )'

2 2

22

(woo.4

22

~2]2
u0 (A+ Co -( + 2

3B12
.A+ L2 2. 2~ 2 d f2.~.~.-C PJ . .~*



4

WU

(b) An easier approach to Finding the OSL for the response measurement to identify A or B can

U, be used for the case a = 0. Writing the response X = YSin(wt) we have,

Lm..

y =(f[1] {}(B.43)

where

(B+ 1)k - Amo)2  -k

-k k - m -2

Hence we have, after some simplification,

k-1 m (k-mw2 )2

(B2 (m-} (B.45)

T A l2 (Bk m (k-moo

where

I I (k-mo 2 ) [k(B+1) -Amw 2] - k2  (B.46)

This yields

._,-k-m~B =.
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2

Q2r -pjBk'm(k-mc3Z) (B.48)o O

where

T Sin (20T)
(B.49) '

P0-- 4(,,,o
.

Thus

Q- 2 (B.50)

Q2(T)

where

I

We observe that though the ratio Q1(T)/Q 2(T) tends to zero as Y tends to unity, indicating that the

upper story is the prefered sensor location, the values of Q1 (T) and Q2(T) becomes vanishingly

small for y = . Also QI(T) = Q2 (T) for y = 0 and y = /2

Similarly, the expressions for Q'(T) and Q2(T) associated with the identification of B can be

expressed as:
.B1

QIr = kxn(k-mco) [A(k-m, i k]] (B.52) ::

I.I

S

B155



and

Q2(k 2 (k-mc ) ik] (B.53)

L i2
* II

with the ratio given by

(I--- =<- , f T tA (B3.54)

Fory= the ratio -; however equations (B.52 - B.53) indicate
2%

that for y= +-I both QM(T) and Q2(T) become vanishingly small. Once

again,Ql(T) = Q2(T) fory=0, and y= -F2, (A 1).
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APPENDIX C

Taking the first variation of equation (235) we obtain

T T

8T= -ax JfY y)dt + ofJ I8 J HR-Hy)dt - XT(t) Sy 10
0 0

T T T T

+ f(XT + ITF) 8ydt +f XTG 8f d+ f 1J(t)8ff dt - t YN+I 10

0 0 0

T

+ f 8YN+ dt (C. 1)

0

Collecting terms in 8y, 8f and 8rj, we get the relations:

,%

.(t) + FT X(t) = -a{Q)y +f3{HT R" Hy, (C.2)

GT X(t)

f(t) = - (C.3) S
11(0

=N (t) fTf 2T(t)GG T(t) (C. 4)
11(t)

0(C.5) p

c
p..

12 1 •



along with the boundary conditions

YN+1(0 =0 ; yNI(Tm= E ; X.(T)=O0 (C.6)

Hence the result given by equation (236).
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